The NGDS Pilot Project
Aiming at Future of Pakistan
This manual describes procedures for measurement of height, mass (weight) and mid-upper-arm circumference (MUAC) of children aged 3-10 years. Beta version was written and tested on the suggestion of Prof. Dr. Zulfiqar Ahmed Bhutta of Department of Pediatrics, the Aga Khan University Medical College, Karachi in 2003. Using this manual, the Project Director trained master anthropometrists of TAWANA PAKISTAN (2003) and students of Department of Special Education, University of Karachi (2006). The section on developmentally delayed children was added for the second training.

UNIT ABBREVIATIONS

\(cm: \) centimeter(s) \(m: \) meter(s) \(ft: \) foot(feet) \(in: \) inch(es) \(lb: \) pound(s) \(oz: \) ounce(s) \(kg: \) kilogram(s)

CONVERSION FACTORS

\[1 \text{ in} = 2.54 \text{ cm} \quad 1 \text{ kg} = 2.205 \text{ lb} \quad 1 \text{ lb} = 16 \text{ oz} \]

Prof. Dr. Syed Arif Kamal (http://ngds-ku.org/kamal), Guest Speaker, Harvard Medical School, Boston, MA, USA; Visiting Faculty, the Albert Einstein College of Medicine, New York, NY, USA; Associated Professor of Orthopedics, Malmö General Hospital, Malmö, Sweden; Research Assistant in Orthopedic Surgery, James W. Riley Hospital for Children, Indianapolis, IN, USA; Sessional Faculty, the Aga Khan University Medical College; Master Trainer for Anthropometric Measurements, Tawana Pakistan/Pediatrics, the Aga Khan Hospital; Member, Subject Committee for Physical Education, Health and Sport Sciences, National Testing Service Pakistan; Professor and Head, Anthromathematics Group (http://anthromath.uok.edu.pk), Department of Mathematics (http://math.uok.edu.pk), Project Director, the NGDS Pilot Project (http://ngds.uok.edu.pk), Senior-Most Professor of University, University of Karachi (http://www.uok.edu.pk), Karachi 75270, Pakistan

1 Preliminaries

1.1 Literature Survey

Anthropology, science of study of human being, became *anthropometry*, when the study involved quantitative measurements (Kamal 2011a). The word *anthropometry* is a combination of *anthropo* (human) and *metron* (measure) — both having a Greek origin. This field of science aims at collecting body-measurement data of high quality using standardized examination procedures, which are standardized, and equipment, which is calibrated. Accurately and precisely collected data are fundamental for time-series modeling of anthropometric trends. Different manuals of anthropometry are available these days, some of which are prepared for specific growth studies (Carter 2002; CDC 2007). The manual at hand was, originally, prepared for trainings of TAWANA PAKISTAN and Department of Special Education, University of Karachi for children study in pre-primary and primary school (ages 3-10 years). Since 2010, it is used, routinely, as a lab manual for students of Biomathematics I-II and Anthromathematics I-II of Department of Mathematics, University of Karachi. This manual acts as the master document of the NGDS Pilot Project.

1.2 Sample Size

If the measurement involves testing of a hypothesis, proper sample size must be calculated according to the confidence interval chosen before starting the survey. Failure to do so may result in collection of data, which could be considered statistically not significant.

1.3 Informed Consent

Even for a simple measurement, *e. g.*, height, weight, mid-upper-arm circumference (MUAC), informed consent (Fig. 1) must be obtained as
per applicable human-right protocol in the region. If the child is not in a life-threatening situation, it is better to follow opt-in policy (measurements are performed only on those children, whose parents send in the filled in and the signed slips). Consent must be valid (i.e., the patient must be adult, free, in full senses; in case of a minor, the consent of custodial parent or guardian must be sought in addition to verbal consent of child above the age of 7 years) and informed (i.e., the patient must be given sufficient information in relevant language using appropriate vocabulary accompanied by pictures and videos, in particular, for parents, who do not have necessary medical background). Failure to adhere to this policy may result in denial of publication in a reputable journal.

1.4 Recording of Data
The following information must be entered for each anthropometric measurement (height, weight, MUAC). Information should be entered using pen on data sheets and later on transferred in computer.

1.4.1 Name and signatures of measurer
1.4.2 Name of assistant (helper)
1.4.3 Name of chaperon — cf. 1.5
1.4.4 Date of measurement
1.4.5 Time of measurement
1.4.6 Place of measurement
1.4.7 Dress code (description of clothing worn) — cf. 1.10
1.4.8 Behavior code — cf. 1.11

1.5 Chaperon
It is recommended to have a chaperon, in case a measurer of opposite gender is collecting data on peri-pubertal or pubertal children — not required if a parent is present. The purpose is to protect the health-care provider as well as the patient by minimizing risks of false allegations of misconduct, misinterpretations of actions as inappropriate or a simple misunderstanding.

1.6 Safety
Laboratory should to be made childproof, as children tend to use ordinary objects (pins, staples, etc.) for play and mischief. Before the start of every session, all equipment is checked for performance and safety. All surfaces, with which the children would come in contact, including floor, are checked for rough edges and sharp objects. Look at sources of hazard/injury listed for each type of measurement.

1.7 Privacy
Acoustic and visual privacy of the participants should be respected. Examination rooms, which are, also, used for history taking, should have acoustic privacy, so that other patients (or unrelated persons) do not hear the conversation among doctor, nurse, patient and patient’s family (if accompanied by patient). This cannot be accomplished in a curtained consultation area, which would afford only visual privacy. Of course, there should be curtain covering the examination area, which could be used for intimate examinations.

1.8 Confidentiality
Only the patient, or the patient’s parents (in case of a minor) or legal guardians (of a patient not capable of making rational decisions about self) are given access to medical records. Data, reported in research papers, reports or presentations, are to be in collective form, without identifying individual patients, to protect confidentiality. On the other hand, all collected data stored in the database must be identifiable by patient’s name and case number, to protect mishandling of information. No data collected should be discarded at any stage, as it is needed for research and becomes a trust of the society. Even when it seems that the data are outdated for research purposes, the data still cannot be destroyed, but put in achieves in the form of compressed files. In case presentations, family labels and children’s initials should not correspond to first letters in actual names. It needs to be maintained about case numbers appearing in the main and the auxiliary research documents. They may not be the ones used to classify patient record and appear on the reports issued to patients. However, there should be a mechanism established, through which the core researchers can, immediately, track the actual cases from the coded numbers included in documents.

1.9 Comfort
As undressing is essential for measurements of children (Kgamphe 2009; Nissinen et al. 1994; Prahl-Andersen 1979; Waaler 1983), it is recommended that same-gender measurer performs these tasks. For parents as well as peripubertal and pubertal children, it is preferable that same-gender physician’s assistant takes history. Even in mild temperatures, fans are not switched on during the checkups, as the children are unclothed for procedures.
1.10 Hygiene
Since the children would be barefoot for measurements, floor should be mopped with mopped with dettol-added water -- generic name of ‘dettol’ is chloroxylonol. Ideally, street shoes should not be allowed in the measurement area for the lab staff as well as the visiting family. Sleepers may be provided at the lab entrance to be put on before proceeding to the measurement area. The measurer should wash and disinfect hands prior to start of session. Gloves should be worn by those handling the youngster, if the examinee shows signs of skin infections.

1.11 Dress Code
The amount of clothing present on a child effects measurements, examinations and observations. Therefore, a dress code is proposed for every measurement, examination and observation (Kamal 1998; Kamal, Alam, Firdous 2002; Kamal, Firdous, Alam 2004). The dress code is a fraction, numerator (denominator) of represents amount of clothing superior (inferior) to transverse plane through the naval. Thus, 0 represents the absence of clothing and 3 the maximum amount of clothing. The following key may serve as guideline:

1.11.1 Examples of Dress Codes
A number in decimals would represent amount of clothing between 2 consecutive whole numbers. For example, a code 0/0.5, would indicate that the child is undressed to short underpants (briefs or panties), all clothing above the waist removed (a practical clothing choice for anthropometric measurements of children), a dress code 0.5/0.5 may be indicative of short upper undergarment kept on during the measurement, whereas a code 0/0 would mean the child is completely undressed, no covering of any kind. It should be noted that 0/0 is ‘indeterminate’, in mathematical frame work, meaning specific value cannot be assigned to this expression. However, in the context of anthromathematics (Kamal, 2010), this expression corresponds to a very specific concept. Sometimes, very young children refuse to remove leggings, socks or shoes, and the measurement has to be taken with these articles of clothing on. A dress code should indicate these non-standard procedures; e. g., ‘L’ following a dress code may represent presence of leggings, ‘S’ stockings, ‘Sh’ shoes (worn during measurement) and ‘G’ gown (if put on). Fig. 1 gives examples of various dress codes in use. For the measurement of parents, one may notice a code 1.5/1.5 (half-sleevd blouse, skirt), 2/2 (shirt, trousers) or (kameez, shalwar with head uncovered and V/2 dupatta removed), 2.5/2 kameez, V or dupatta, shalwar), 3/3 (abaya or burqa with head covering) 3/3 (abaya or burqa with head covering), etc. Every examiner must, however, set the code according to the environment and the style of clothing worn at the measurement setting. The codes used should be explained at the beginning of a report.

1.11.2 Optimal, Recommended and Actual Dress Codes
In writing down procedures for anthropometric measurements of children, a recommended dress code, ‘d’, is given based on practical considerations. If the optimal value of dress code, based on technical consider-ations, differs from the recommended value, it is, also, mentioned in brackets. The form, on which anthropometric measurement is recorded, must have a column to enter the actual dress code, ‘D’, describing amount of clothing the child had on at the time of that particular procedure.

1.11.4 Necessity of Undressing for Children’s Anthropometry
For data collected to be reported in MSc-project reports, MPhil theses, PhD dissertations, international-conference presentations and papers published in peer-reviewed journals, it is very important that arrangements should be made so that anthropometric measuremens should be taken after children have been appropriately undressed for the following reasons:

1.11.4.1 To ascertain maintenance of proper posture during various anthropometric procedures, as explained in 1.11.3.1.1 to 1.11.3.1.3 — Additional File of Kamal, Rajput and Ansari (2016) contains definitions of anatomical axes and planes:

1.11.3.1.1 Height Measurement: Non-flexing of knees and elbows; attention position; non-lifting of heels; body alignment with wall-mounted tape; toes symmetric about sagittal plane containing edge of engineering tape; head straight
1.11.3.1.2 **Mass Measurement**: Non-flexing of knees and elbows; stand-at-ease position; weight equally distributed on both feet; head straight

1.11.3.1.3 **MUAC Measurement**: Thigh and shin of each leg perpendicular to each other; hand flexed at 90° at the elbow joint; thighs and upper torso at right angle; head straight

1.11.3.2 To ascertain proper inhalation during all three measurements.

1.11.3.3 To record net mass without mass of clothing.

1.12 Behavior Code

<table>
<thead>
<tr>
<th>D</th>
<th>B</th>
<th>d</th>
<th>b</th>
</tr>
</thead>
</table>

The behavioral state may have a numerical value 0 (relaxed and coöperative), 1 (timid and shy, but coöperative) and 2 (resistant and nagging).

1.12.1 **Optimal and Actual Behavior Codes**

The optimal value for all the measurements is 0. In the procedures for measurement of height, weight and mid-upper-arm circumference (MUAC), the maximum numerical value of behavior code, ‘b’, is given for which this procedure is permitted. The form, on which anthropometric measurement is recorded, must have a column to enter the actual behavior code, ‘B’, the child was in at the time of that particular procedure. Note down if the procedure, itself, changed the behavior code (Kamal 1998; 2002). In order to perform measurements in the behavior code 0, it is suggested to brief about and demonstrate the procedures beforehand.

1.13 Measurements of Developmentally Delayed Children

A developmentally delayed child may not be able to stand for measurement of height and weight or sit in a chair for measurement of mid-upper-arm circumference (MUAC). If a posture approximating the standing posture is achieved, stature should be measured by the methods given below. Record the limitations of measurement (with a photograph of child’s posture, if possible) on the chart. If the child is unable to stand at all, measure recumbent length, and make a note on the chart. Similar adaptation may be needed for measurement of mass (weight). A child reluctant/unable to stand alone on the scale, may be weighed along with a parent. The child could, later, be held by another person, and weight of parent recorded. Difference of the 2 readings should give the weight of child.

1.13.1 **Uniformity of Protocols**

Follow the same techniques and protocols during successive measurements. Understanding instructions, compliance and coöperation may be issues with the child affected with Down’s syndrome.

2. **Measurement of Standing Height (Stature)**

One of the essential measurements during childhood and adolescence, indicating tissue synthesis. Failure to gain height in childhood is the first indicator that body systems are not working properly and needs to be addressed at an early stage. If one of the children is stunted (short-for-age) and the other may have normal height, scoliosis may be suspected. Excessively tall children are at a higher risk to develop scoliosis (Kamal 2012a; Kamal, Sarwar and Razzaq 2013). There are, also, indications that wasting is induced by stunting (Kamal, Jamil and Razzaq 2014a).

2.1 Materials Required (in alphabetical order)

2.1.1 Box

2.1.2 Chair (with wooden base)

2.1.3 Chart sheet

2.1.4 Disposable combs

2.1.5 Eraser

2.1.6 Glue (strong)

2.1.7 Gloves

2.1.8 Magnifying glass

2.1.9 Mirrors (strip + wall mounted)

2.1.10 Pencil

2.1.11 Plumb line

2.1.12 Setsquare set

2.1.13 Spirit level

2.1.14 Steel measuring tape

2.1.15 Torch

2.1.16 Transparent tape

2.1.17 Wooden board

2.2 Least Count

For the wall-mounted-height-measurement system developed and implemented by the NGDS Team (described below), the least count (Kamal 2009b) is 0.1 cm. Since 2011, least count of height-measurement system in SF-Growth-and-Imaging laboratory is 0.01 cm. This has been accomplished by mounting a Vernier scale on the setsquare used to measure height. In 2016, the NGDS team intends to upgrade height measurement to least count of 0.005 cm.
2.3 Performance Checking (Calibration)
At the start of each daily height-measurement session, a standard cylinder must be used to check if the mounted scale is working properly. The method is to measure length of a cylinder using Vernier calipers and then take the reading through the mounted scale (Kamal 2009b).

2.4 Procedures
2.4.1 To be measured in the morning between 9 a.m. to 12 noon.
2.4.2 Check the level of floor using spirit level. If the floor is not level (inclined), along the line (formed by joining heels of the standing child), either shift the place or use a wooden board, which is adjusted to horizontal level by keeping paper supports under the corners.
2.4.3 Check the angle made by the wall with the floor using a setsquare. If the wall is not vertical, try to find a vertical wall or fix a wooden board vertically on the wall.
2.4.4 Place the chart sheet on wall or door with the help of mounting tape. A better option is to use strong glue to stick the chart sheet to the wall.
2.4.5 Place the steel measuring tape vertically on the center of chart sheet from the floor up to the two-meter length with the help of transparent tape very firmly. In order to avoid cuts, gloves should be worn during mounting process.
2.4.6 Check the vertical alignment and parallax errors using plumb line and mirror, respectively.
2.4.7 Ask the child to remove everything (head covering, undershirt/vest, shoes, socks and accessories, which include bangles, hair-band/hair-clips, pony, rings) except short underpants — dress code 0/0.5 (Fig. 2). Box should be provided to ch
2.4.8 If that appears to be, exceptionally, difficult to implement, ask the child to take off shoes, socks and hair band (if worn) — however, one must be aware that data collected in this manner might not find acceptability in reputed journals.
2.4.9 Using a (disposable) comb part hair leaving gap in the middle, where the setsquare is placed (comb not to be shared by children to avoid transmission of infection)
2.4.10 The child should stand erect in attention position (military parade) with heals together and touching the wall, buttocks and upper part of the back in contact with the vertical wall.
2.4.11 Hands should be straight and open, palms touching the thighs.
2.4.12 Centralize the position of child with the help of a setsquare passing between both feet and aligned to the measuring tape on the wall as well as the horizontal line drawn on floor (Fig. 2a).
2.4.13 Chin should be parallel (examiner should hold a pencil in front of the face of child; instruct the child to look at the pencil). Knees and elbows should not be flexed.
2.4.14 A better option is to mount a mirror facing the examinee, and ask the child to look into own eyes.
2.4.15 Ask the child to trap maximum air and measure height with the help of a setsquare by touching (not pressing) it over the head the other side aligned with the measuring tape mounted on wall (for taller individuals the measurer should stand on a wooden chair to bring eyes in line with head of the person, whose height is being measured). The setsquare should be placed so that its surface lies in sagittal plane passing through nose. To make sure this is the case, hold another setsquare parallel to transverse plane, one side aligned with the sagittal-plane setsquare, the other with the chart sheet (Fig. 2b).
2.4.16 Note height to the nearest one-tenth of centimeter (Fig. 2c, d).
2.4.17 Ask the child to step away from the wall.
2.4.18 Use a magnifier/torch if you need one.
2.4.19 The measurement should be done with the assistance of a social scientist or a teacher.

2.5 Sources of Hazard/Injury
2.5.1 Sharp edges on both sides of steel tape not properly covered by transparent tape, resulting in body abrasion/cut
2.5.2 Top of steel tape not properly mounted on the wall, could come out peeling off the steel tape and causing injury to the child
2.5.3 Chart sheet not mounted firmly on the wall, might come out bringing steel tape along and causing injury
2.5.4 Sharp edges of setsquare going in eyes or ears

2.6 Sources of Error
2.6.1 Carpet (in faculty offices) 2.6.13 Parallax error
2.6.2 Uneven floor (mud), during field studies; 2.6.14 Head not straight (tilted forward or backward)
2.6.3 level of surface in laboratory 2.6.15 Shrinking neck muscles
2.6.4 Hair on the head 2.6.16 Standing height is lesser as compared to recumbent length
2.6.5 Scarf (if not removed) 2.6.17 Child flexing knees/elbows
2.6.6 Socks and shoes (if not removed) 2.6.18 Improper use of set square
2.6.7 Breathing (not complete inhaling) 2.6.19 Feet with mud
2.6.8 Heels lifted up 2.6.20 Weak muscles of hips and legs
2.6.9 Toes lifted up 2.6.21 Child not standing still
2.6.10 Measuring time not same (morning and evening) 2.6.22 Child not looking straight
2.6.11 Not putting equal weight on both feet 2.6.12 Child holding on to something
2.6.13 2.6.23 Height measured after strenuous exercise

2.7 Technical Note
Beam setup for measuring height, provided in most weighing scales of beam type, is inappropriate for measurement of standing height. Standing-height machine or setsquares (method described above) should be used for measurements. If setsquares are not available, a book may be used. However, use of book may introduce alignment errors (Kamal 1982a).

3 Measurement of Mass (Weight)
Another essential measurement having significance in all age ranges. Failure to gain mass (weight)/rapid loss of weight in childhood may signal a deeper problem, requiring a complete physical and psychological examination. Both underweight and overweight conditions in childhood have serious ramifications, when it comes to quality of life in adulthood and old age. There are, also, indications that stunting is induced by wasting (Kamal, Jamil and Razzaq 2014a).

3.1 Materials Required (in alphabetical order)
3.1.1 Eraser 3.1.4 Pencil 3.1.7 Torch
3.1.2 Beam (Bathroom) scale 3.1.5 Spirit level 3.1.8 Wooden board
3.1.3 Magnifying glass 3.1.6 Standard mass of 2 kg — may not work for bathroom scale

3.2 Least Count
For bathroom and beam scales, the least counts are 0.5 and 0.1 kg, respectively. For serious studies, involving growth disorders, bathroom scale is inappropriate. Since 2011, least count of mass-measurement system in SF-Growth-and-Imaging Laboratory is 0.01 kg. This has been accomplished by mounting a Vernier scale on a setsquare and aligning it with the cylinder in the upper beam. In 2016, the NGDS team intends to upgrade mass measurement to least count of 0.005 kg.

3.3 Performance Checking (Calibration)
At the start of each daily mass-measurement session, a standard 2-kg mass must be used to check if the beam scale is working properly. This standard mass may not be sensitive enough (Kamal 2009b) to give reading on the bathroom scale.
3.4 Procedures

3.4.1 Measurement should be done in the morning between 9 a.m. to 12 noon.

3.4.2 Select a suitable place to put down the bathroom or beam scale — a wooden board or a clean-cemented floor. Check the level of this surface using a spirit level. If the surface is not level (inclined), along the line (formed by joining heels of standing child), identify another place or reorient the weighing machine.

3.4.3 Place the weighing machine on this surface.

3.4.4 Check the level of weighing machine, along the line mentioned in a), with the help of spirit level placing it over the center of machine.

3.4.5 Make sure that the weighing machine reading is ZERO. If that is not possible, note down the zero error and subtract it from each reading.

3.4.6 Place a standard mass of 2 kg to check if the beam scale is working properly.

3.4.7 Weight should be taken with minimal practical clothing on.

3.4.8 Ask the child to take off everything (cap/scarf, undershirt/vest, shoes, socks and accessories, which include bangles, hair-band/hair-clips, pony, rings) except briefs or panties — dress code 0/0.5. (Fig. 3a).

3.4.9 If that becomes, extremely, difficult to accomplish, ask the child to remove cap, hair band (clips, pony, ribbons or other accessories used to keep braided hair in place), scarf, shoes, socks, sweater, V or dupatta and belts (if abaya or chador is worn by the child, it must be removed for the purpose of weighing) — however, one must note that data obtained in this fashion might not find acceptability in respectable journals.

3.4.10 More important is uniformity among different measurement sessions. This is not a problem in schools, where everybody is wearing school uniform.

3.4.11 Style of uniform, however, may be different in a growing child, e.g., skirt, blouse, vs. shalwar, kameez, V or dupatta in girls, and shirt, shorts vs. shirt, slacks, in boys.

3.4.12 This may be accounted for by entering dress code (numerical code and word description, in particular, if the weight is taken with the child wearing V or dupatta) with the measurement — the main problem is the amount and the style of underclothing worn, which is, sometimes, not known; if possible, ask the child not to wear anything under the shirt on the day of measurement.

3.4.13 Instruct the child to empty pockets and hands.

3.4.14 Ask the child to step on the weighing machine in stand-at-ease position (military parade), both feet parallel (slight gap between them) and look straight. Knees and elbows should not be flexed.

3.4.15 Hold a pencil at eye level, in front of nose and ask the child to look at the pencil.

3.4.16 Ask the child to breathe in deep and hold breath and record mass of child to the nearest one-tenth of kg.

3.5 Sources of Hazard/Injury

2.5.1 Child stepping unevenly on the bathroom scale, resulting in overturning of the scale

2.5.2 Child playing around the beam scale, resulting in fall of the scale
3.6 Sources of Error

Fig. 3b-d show common sources of error in measurement of mass. Some are listed below:

3.6.1 Heavy and light clothing during successive measurements
3.6.2 Different styles of clothing (3.4.8 of Procedures) during successive measurements
3.6.3 Socks and shoes (if not removed)
3.6.4 Shaking child
3.6.5 Zero error
3.6.6 Unequal weight on both feet
3.6.7 Child holding on to something
3.6.8 Breathing (complete breathe in)
3.6.9 Heels up and down
3.6.10 Flexing of knees and/or elbows
3.6.11 Recording at different times of the day
3.6.12 Wet body after bath
3.6.13 Body not clean
3.6.15 Pockets holding heavy things
3.6.16 Measuring before and after elimination
3.6.17 Measuring before and after heavy meal intake
3.6.18 Looking down to read own weight
3.6.20 After disturbed sleep
3.6.19 Measuring before and after eli
3.6.21 Weight of watch, ornament and eye glasses (if not removed)
3.6.22 Level of surface, on which machine is placed

3.7 Net Mass and Clothing Correction

Net mass is defined as mass recorded when the subject is not wearing any clothing. This is the mass mentioned in growth tables and charts. Often, in field studies, mass is recorded with the subject wearing some clothing (children just underwear and adults indoor clothing). This mass is termed as gross mass. Net mass is obtained from gross mass by subtracting a suitable clothing correction. Table 1 suggests clothing corrections for different articles of clothing left on a child. The author proposed a method (although, time consuming and not practical) through which net mass could be determined without asking the subject to remove all clothes (Kamal 2010a). $\mu = \mu_a + \mu_b - \mu_{a+b}$ could be used to compute net mass (mass with zero clothing on) without asking the subject to disrobe completely (μ is net mass, μ_a mass with one set of clothing worn, μ_b mass with the other set of clothing worn and μ_{a+b} mass with both sets of clothing worn).

3.8 Technical Note

Measurement taken using a bathroom scale gives weight (measurement performed on the basis of Hooke’s law), the machine is wrongly calibrated" (Kamal 2009b) in kilograms (a unit of mass) — this point is well illustrated by the fact that an object showing a weight equivalent to a reading of 1 kg on earth shall show a weight equivalent to a reading of $1/6$ kg on moon; whereas the measurement performed using a beam scale gives mass (comparison with the standard mass, using the principle of lever). Further, in studies involving growth disorders measurements taken in indoor clothing or on bathroom scale do not make any sense. Bathroom scale has a least count of 0.5 kg, whereas international standards call for measurement to an accuracy of at least 0.1 kg. Since 2011, height and mass measurements in SF-Growth-And-Imaging Laboratory are conducted to accuracies of 0.01 cm and 0.01 kg, respectively, using equipments modified as per recommendations of Kamal (2010a).

4 MEASUREMENT OF MID-UPPER-ARM CIRCUMFERENCE (MUAC)

MUAC is an indicator of state of nutrition in children and can be obtained easily during field studies. An unequal MUAC on both arms may indicate presence of trunk deformities.

4.1 Materials Required (in alphabetical order)

4.1.1 Eraser
4.1.2 Magnifying glass
4.1.3 Micrometer screw gauge
4.1.4 Pencil
4.1.5 Skin marker
4.1.6 Tailor’s tape
4.1.7 Torch
4.1.8 Vernier calipers

<table>
<thead>
<tr>
<th>Dress Code</th>
<th>Description of Attire</th>
<th>Clothing Correction (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/2</td>
<td>Stripped to waist, wearing trousers</td>
<td>0.1</td>
</tr>
<tr>
<td>0/1</td>
<td>Stripped to waist, wearing shorts</td>
<td>0.05</td>
</tr>
<tr>
<td>0/0.5</td>
<td>Stripped to waist, wearing briefs/panties</td>
<td>0</td>
</tr>
<tr>
<td>0/0</td>
<td>Completely undressed, no clothing present</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Recommended clothing correction for measurement of children
4.2 Least Count
For tailor’s tape, the least count is 0.1 cm. Although, the least count is same as the measurement of height, this procedure is prone to greater variation among different readings because pressure applied may vary.

4.3 Performance Checking (Calibration)
At the start of each MUAC-measurement session, a standard cylinder (with diameter measured using Vernier calipers) must be used to measure circumference of the curved surface, to ensure that the tailor’s tape is working properly. The measured circumference (by tape) should agree with the computed value given by the product of measured diameter and \(\pi \) (an irrational number having value of 3.14159…..).

4.4 Procedures
4.4.1 The measurement should be done in the morning between 9 a.m. to 12 noon, on the right upper arm, with the child undressed except for underwear. If that is not possible, instruct the child to remove shirt.
4.4.2 Ask the child to sit on stool and place both hands on thighs, arm aligned with the upper torso and breathe in maximum air.
4.4.3 If the child’s feet do not touch the floor, place wooden planks on the floor so that the feet are resting on the plank and making an angle of 90° with shin (Fig. 4a). In case legs are long, with the result that thigh and shin are making an obtuse (greater than 90°) angle when the child is sitting on the stool, measurement cannot be obtained. The stool must be raised so that the above-mentioned angle becomes exactly 90° and feet rest on the floor.
4.4.4 Locate the acromial and the radial landmarks.
4.4.5 Label these landmarks with a skin marker (this activity dropped after initial practice).
4.4.6 Measure, carefully, the distance between the two landmarks with the help of tailor’s tape (Fig. 4b).
4.4.7 Divide the above reading by 2 to locate the midpoint between the two landmarks.
4.4.8 Label the midpoint with a marker, e.g., If the reading is 30 cm then divide by 2 to get 15 cm (this activity dropped after the initial practice).
4.4.9 Measure the circumference at the marked midpoint with the help of tailor’s tape in centimeters.
4.4.10 Do not stretch the tape (Fig. 4c).

4.5 Source of Hazard/Injury
4.5.1 Pressing too hard on the skin of hand and blocking circulation.

4.6 Sources of Error
a) Not measuring exactly at the center e) Swelling due to allergy and inflammation
b) Stretching the tailor tape f) Position of elbows and knees (not making 90°)
c) Measuring after exercise g) Child holding on to something in hands
d) Measuring after IV infusion h) Not inhaling completely

4.7 Technical Note
If the child is wearing a long-sleeved shirt or a sweatshirt, which cannot be removed to take measurement on bare skin (measurement by rolling up the shirt is not acceptable as acromial landmark is non-unique in this
situation), MUAC is obtained on shirt (a note must appear in the form recording measurement to indicate non-standard procedure) and converted to bare-skin circumference using the following formulae (Kamal 1986; Kamal and El-Sayyad 1980; Kamal et al. 2001a):

\[g = G - 2\pi a \]
\[g = G' + 2\pi (1 - \pi) \]

where,
\[g \] MUAC on bare skin
\[a \] Thickness of clothing (obtained using micrometer screw gauge)
\[G \] MUAC on tight-fitting clothing
\[G' \] MUAC on loose-fitting clothing, not including 2 layers, held in front to fix things

5 Concluding Remarks

For a model of child growth (Kamal, Firdous and Alam 2004; Kamal, Jamil and Khan 2011; Kamal and Jamil 2012; Kamal, Jamil and Ansari 2013; Kamal, Ansari and Jamil 2014; 2015) to provide clinically useful information (Kamal 2014), it is imperative to have a standard protocol for measurement — easy-to-use equipments, easy-to-implement procedures, reliable and reproducible (Kamal, Razzaq and Jamil 2013). The three types of errors, imprecision (intra- and inter-observer variation — stability and objectivity), inaccuracy (instrument error, actually systematic error) and undependability (non-nutritional factors affecting measurement reproducibility, e.g., variation of height and weight during the day) should be minimized (Ulijaszek 1997). Only measurers with documented reproducibility should perform measurements, which are reported in research papers. Establishment of SOPs (standard operating procedures) would allow researchers in different parts of the world to compare their findings (Onis et al. 2004) and update growth charts (Karlberg, Cheung and Luo 1999). The anthropometrists should be trained to spot malnutrition (Kamal 2015b; Kamal, Jamil and Razzaq 2014a), trunk deformities (Kamal, Sarwar and Haider 2014; Kamal, Sarwar and Razzaq 2013; 2015) and signs of abuse (Kamal 2011d; Kamal and Khan 2014), as they'll have a chance to see the children, undressed. The parents should appreciate the importance of accurate and precise (Kamal 2009b) measurements — there is, also, a need to modify anthropometric instruments to keep pace with the improvement in protocols (Kamal 1982b). They should take a proactive role in ensuring that their child should be measured according to procedures, accepted internationally (Kamal 2011c). Of course, the parents would take interest in the measurement processes, if they have support system available, which could guide them at every stage to take care of the health needs of their children and provide easy-to-implement solutions for their children to gain height (Kamal 2013a; Kamal, Manzoor and Khan 2013b), manage weight according to height (Kamal 2013b; 2015a; c; Kamal, Burki and Jamil 2013, Kamal and Jamil 2014) and overcome vitamin-D deficiency (Kamal 2013c; Kamal, Manzoor and Khan 2013a) by lifestyle adjustment, diet and exercise plans (Kamal and Khan 2013; 2014; 2015). Measurement of height, weight and MUAC could, also, be used as teaching opportunities to introduce new concepts and experiences. Given below are examples, illustrating how height and weight measurements may be looked from different perspectives. These activities could be used to generate, illustrate and link concepts in various disciplines.

5.1 Pedagogical Opportunities Offered by Height Measurement

The following is the extended version of material, which first appeared in (Kamal 2008):

Biology: The metabolism of food

Chemistry: The process of conversion of food resulting in tissue synthesis (the phenomenon of height gain)

Engineering: Need of level surface, technique of mounting engineering tape (vertical mounting checked by plumb line)

Health and Safety: Evaluating nutritional status, failure to gain height may be a signal to some physical problem (failure-to-grow); failure to gain height and achieve developmental milestones may indicate a much deeper problem (failure-to-thrive) — pediatrician should look for indications of abuse (neglect, peer pressure/bullying, verbal, physical, sexual) in this situation (Kamal 2011d)

Mathematics: Significance of serial measurements, plotting of graph, computation of slope, time-series concept, prediction of adult height, comparison with cut-off height for armed-forces career

Physics: Techniques of measurements, achieving reproducibility, applying equal weight on both feet

Quranic Studies: The Holy Quran (sacred book of Muslims) mentions appointment of Tālōt as king over Israelites (verse 247, chapter 2, Suratul-Baqara). It is mentioned that Samuel (peace be upon him) had a rod. It was told to Israelites that their king would be as tall as the length of rod — comparison of height with agreed-upon standard (Khan and Naeemuddin 1999)
A situation, in which engineering tape is mounted in a tilted position by mistake, could be used to teach the following concepts (Kamal 2011b): (a) Computation of hypotenuse from perpendicular (trigonometry); (b) A line parallel to base intersects the sides of triangle such that the line segments are proportional (geometry).

5.2 Pedagogical Opportunities Offered by Mass (Weight) Measurement
This simple activity can be a source of learning for students, if the measurer involves them in the process. The pedagogical opportunities, generated from this activity may be summarized as (Kamal and Jamil 2013):

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>The metabolism of food</td>
</tr>
<tr>
<td>Chemistry</td>
<td>The process of food conversion resulting in gaining energy, sweating</td>
</tr>
<tr>
<td>Engineering</td>
<td>Need of level surface, checking if the weighing machine, itself, is level</td>
</tr>
<tr>
<td>Health and Safety</td>
<td>Rapid loss of weight signals physical problems, unutilized food results in fat deposit, contributing to obesity</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Significance of serial measurements, plotting of graph, computation of slope, concept of time series, prediction of adult mass (weight), net-mass computation from gross mass (Kamal 2010), optimal mass-for-height — net mass is defined as mass with zero clothing, gross mass is the mass recorded in indoor clothes</td>
</tr>
<tr>
<td>Physics</td>
<td>Measurement techniques, reproducibility of measurers, exertion of equal weight on both feet</td>
</tr>
<tr>
<td>Quranic Studies</td>
<td>Maintaining optimal weight-for-height is encouraged in the Holy Quran (verse 29, chapter 17, Surah Bani-Israal or Suratul-Asra) by stating that one should exercise discretion in spending, neither to spend too much like burning candles at both ends nor become stingy (Kamal and Jamil 2012)</td>
</tr>
</tbody>
</table>

5.3 Pedagogical Opportunities Offered by MUAC Measurement
MUAC can serve as the first indicator of malnutrition. Pedagogical opportunities, associated with this activity include (Kamal et al. 2011b):

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>The metabolism of food</td>
</tr>
<tr>
<td>Chemistry</td>
<td>The process of food conversion resulting in proper muscle and fat development</td>
</tr>
<tr>
<td>Engineering</td>
<td>Need of level surface, checking if the stool, itself, is level,</td>
</tr>
<tr>
<td>Health and Safety</td>
<td>Evaluating nutritional status (Shakir strip has red and green regions indicating normal and at-risk conditions, both on the lower and the higher side), inequality in MUAC may be indication of trunk deformity, in particular, scoliosis (an improper exercise routine may, also, result in asymmetric muscle development)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Measurement of circumference, midpoint of distance between acromial and radial landmarks, significant difference between right and left arm as threshold of trunk-deformity risk, calibration — conversion of MUAC taken on clothing to that taken on body (Kamal 1986; Kamal et al. 2011a)</td>
</tr>
<tr>
<td>Physics</td>
<td>Measurement techniques, reproducibility of measurers, exertion of optimal pressure on arm, use of a mirror or camera/monitor to visualize opposite side of hand in order to make sure tailor’s tape is horizontal</td>
</tr>
<tr>
<td>Quranic Studies</td>
<td>Measurement of right MUAC should precede left MUAC. According to the Holy Quran, men who receive their deed record in right hand are successful and those who receive it in their left hand are doomed (verse 19-37, chapter 69, Suratul-Haaqa).</td>
</tr>
</tbody>
</table>

6 ENDNOTES
1The claim of manufacturers of airport body-scanning systems (Kamal 2010b) that the machine-generated data are destroyed in real time and not stored (whereas there is an additional claim that data can be stored during test runs), seems not to be consistent with current scientific practices. Airport-body-scanning machines are generating data in terms of images, which can not be destroyed as these data would be needed for research, debugging and post-disaster-security-lapse analyses (equivalent to black box of an aircraft).
2Dupatta is a garment worn on shoulders (on top of kameez — explained in Endnote 4), sometimes covering head, generally, in the Indian subcontinent, the Middle East and the Far East.
3V is a strip of cloth worn on shoulders (on top of kameez), generally, in the Indian subcontinent, the Middle East and the Far East.
4Kameez is a garment worn on the upper portion of body, resembling a long shirt, generally, in the Indian subcontinent, the Middle East and the Far East.
5Trainers is an informal name for training shoes — running shoes for sport training.
References

Kamal SA (2009b, December 16, 17). Mathematics of experimentation. The National Conference on Physics and the World of Today in the memory of Prof. Dr. Muhammed Rafi and Prof. Dr. Muhammed Razi Hussain, Department of Physics, University of Karachi, Karachi, Pakistan, pp 9, 10 (Prof. Dr. Muhammed Rafi and Prof. Dr. Muhammed Razi Hussain memorial lecture), abstract#1: http://www.ngds-ku.org/Presentations/Physicss2.pdf

Kamal SA (2011a, February 19). From anthropometry to anthromathematics. Faculty of Medicine Research Seminar, the Ziauddin University, Karachi, Pakistan, abstract: http://www.ngds-ku.org/Presentations/Ziauddin.pdf

6 Sneakers are canvas shoes with rubber soles worn for sport or in informal setting — roughly equivalent to plimsolls in British English.

7 Pants are meant here to be equivalent to trousers, as understood in North America. In England, pants are, sometimes, meant to be used for underpants.

8 Shalwar is a garment worn on the lower portion of body, resembling athletic trousers, generally, in the Indian subcontinent, the Middle East and the Far East.

9 Abaya or burqa is an outer garment worn by females, mainly, in Muslim culture.

10 For safekeeping of personal items — bow, cell phone, hair clips, pony, jewelry (bangles, bracelet, brooch, chain, ear ring, finger ring, locket), hairpins, tie, wallet, watch

11 Measurer can stand on this chair for recording height of taller individuals.

12 Least count is the least possible measurement, which could be obtained from a given instrument. For example, the least count of most wristwatches, these days, is 5 seconds.

13 Calibration of a scientific instrument means someone is converting the output given in terms of variable A (which is not of interest) to variable B (which is required). This conversion would be easier if there is a linear relationship between the variables A and B. Examples are calibration of a thermometer (height of the mercury column, in centimeters, is converted to read in centigrades) or ammeter (needle deflection, in degrees, is converted to display current in micro-ampéres).

Kamal SA, Manzoor CMS and Khan SA (2013a, September 4, 5). Diet-based interventions and vitamin-D deficiency. The First Conference on Anthromathematics in the Memory of (Late) Syed Firdous, Department of Mathematics (ANTHROMATHEMATICS 2013), University of Karachi, Karachi, Pakistan and Government College, Hyderabad, Pakistan, p 14, abstract#Anthro13-08: http://www.ngds-ku.org/Presentations/VitaminD.pdf

Kamal SA, Rashid SF, Rehman U, Mumtaz N, Aziz Z and Naqvi NF (2011a, December 21, 22). Verification of conversion formulae for MUAC on skin and clothing. The International Conference on Physics and the World of Today in the memory of (Late) Prof. Dr. Sheikh Ansar Husain, Department of Physics, University of Karachi, Karachi, Pakistan, p 62 (poster presentation), abstract#42: http://www.ngds-ku.org/Presentations/Physics3-3.pdf

Kamal SA, Razzaq UA and Jamil SS (2013, September 4, 5). Importance of standardization of anthropometric protocols. The First Conference on Anthromathematics in the Memory of (Late) Syed Firdous (ANTHROMATHEMATICS 2013), Department of Mathematics, University of Karachi, Karachi, Pakistan and Government College, Hyderabad, Pakistan, p 12, abstract#Anthro13-06: http://www.ngds-ku.org/Presentations/Anthropometry.pdf

Kamal SA, Saeed N, Saleem MS, et al. (2011b, December 21, 22). Anthro-mathematics of MUAC. The International Conference on Physics and the World of Today in the memory of Prof. Dr. Sheikh Ansar Husain, Department of Physics, University of Karachi, Karachi, Pakistan, p 66 (invited lecture), abstract#45: http://www.ngds-ku.org/Presentations/Physics3-2.pdf

Khan AR and Naeemuddin M (1999). Kanz-ul-Imān, Qudratullah and Co., Lahore, Pakistan, p 51

Web address of this document: http://www.ngds-ku.org/ngds_folder/M02.pdf