DESIGNING CURRICULA OF MATHEMATICS, WHICH PRODUCE LEADER-INTTEGRATOR OF TOMORROW

PROF. DR. SYED ARIF KAMAL

Abstract

This paper initiates discussion and critique of mathematics curriculum designing in the Pakistani setting. The curriculum and the associated pedagogical techniques should cultivate habits of creative thinking and critical analysis and create a mindset to be able to resolve conflicts. Various aspects of curriculum development—philosophy, contents and pedagogical techniques—should be integrated. Philosophical basis of the education system should make the student to become a manager of resources of the universe (not a thief). The curriculum should not only train, but also, educate student. Emphasis is placed on concept building and technique developing. The curricula developed should give equal importance to moral upbringing, intellectual upbringing and physical upbringing. There should be a system of follow through and follow up through feedback from students, lecture/tutorial/problem-solving session observation by senior teachers and videotaped lecture/tutorial/problem-solving session evaluation by experts. The curricula should not only increase IQ, but also, develop emotional intelligence (EQ) and ability to portray vision as well as communication and networking skills. The students should be trained in the sound style of leadership (commit and contribute), making the incumbent realize the 3 components of an organization—structure, culture and development. Curricula of the final year of each certificate or degree program should have components, which help the graduates seek jobs, by training them not only in the technical (subject) skills, but also, in the performance (managerial) skills as well as the innovative (out-of-the-box thinking) skills through behavior-based interviewing techniques. Revised curricula of Department of Mathematics, University of Karachi for MA/MSc, MPhil and PhD are presented.
Contents

1. Pedagogical Challenges and Opportunities in Sport and Anthropomathematics
 Syed Arif Kamal... 01

2. Treatment Approaches Available for Autism Spectrum Disorder
 Carole Sénéchal ... 31

3. The Opinion of Pre-Service Teachers Regarding the Effectiveness of Pair Teaching and Mentoring During Practicum
 Fozia Gulab ... 57

4. Sociological Perspectives on Crime Against Women in Karachi
 Yaqub Arshad & *Zeenat Sana Baloch* .. 71

5. Technological Challenges in Education
 Shagufta Shahzadi & *Munazza Madani* .. 85

6. The Role of Foreign Aid Agencies in Improvement of Education and Living Style of Rural Society of Sindh
 Naveed Ahmed & *Syed Abdul Aziz* ... 91

7. The Politics of Nationalism: A Case Study of Balochistan
 Mumtaz Ali ... 107

8. State of Civil Society Organizations
 Abdul Rahim Changoni ... 117
PEDAGOGICAL CHALLENGES AND OPPORTUNITIES IN SPORT AND ANTHROMATHEMATICS

PROFESSOR DR. SYED ARIF KAMAL*

Nominee of the Academic Council for Board of Faculty of Education; Chairman, Department of Health, Physical Education and Sports Sciences; Head, Anthromathematics Group; Dean, Faculties of Science and Engineering, University of Karachi, Karachi 75270, Pakistan; profdrakamal@gmail.com

Abstract

This paper describes pedagogical challenges and opportunities existing in ‘Program of Sport and Anthromathematics’. Anthromathematics is the mathematics of human body sizes, forms, shapes and proportions, which was, formally, launched on March 22, 2010. The scheme of studies consists of formal teaching, examinations (exploring correctness of concepts and learning of techniques) and projects (non-formal development of skills). Formal teaching is based on problem-solving approach. Classroom-problem solving prepares the student for laboratory-problem solving, which, in turn, is a precursor to field study and industrial-problem solving. Quizzes and examinations are designed with a changed layout, SOPs prepared for invigilators and grading system simplified to reduce time for checking a script to around 4 minutes. Projects train the students in research-proposal preparation, planning of study, conduct of study, analysis of data using mathematical-statistical techniques and interpretation of results. The anthropometric measurements (height, mass, mid-upper-arm circumference) obtained during the conduct of project offer a wealth of learning opportunities in various disciplines — biology, chemistry, engineering, health and safety, mathematics, physics and Quranic studies. The goal is to change student’s perspective and attitude towards the subject at the same time refining concepts and perfecting techniques.

Keywords: Problem-solving approach, examination pattern, research-oriented teaching, community outreach

*Professor of Mathematics and Interdepartmental Faculty, Department of Education, University of Karachi; Ex-Convener, National Curriculum Revision Committee (Mathematics), Higher Education Commission; Ex-Convener, Subject Committee (Mathematics), National Testing Service Pakistan; Ex-Convener, Sub-Committee (Academics), the Education Committee, Transparency International Pakistan; Ex-Member, Expert Panel (Mathematics), National Curriculum Council, Ministry of Education, Government of Pakistan • paper mail: Dean, Faculty of Science, University of Karachi, PO Box 8423, Karachi 75270, Sindh, Pakistan • telephone: +92 21 9926 1077 • homepage: https://www.ngds-ku.org/kamal

Copyright 2016. Dept. of Teacher Education, Faculty of Education, University of Karachi
Introduction
Anthromathematics was introduced by the author in the Syed Firdous memorial lecture delivered during the First National Conference on Mathematical Sciences held in Department of Mathematics, University of Karachi in 2010. Defined as the mathematics of body sizes, forms, shapes and proportions, the sciences of ‘anthropology’ (study of human being) and ‘anthropometry’ (measurement of human being) take the shape of ‘anthromathematics’ through ideas from mathematics. e. g., mathematical equations are used to approximate human-body form (‘analysis’ — formulae for surface area and volume of human body), discrete structures are seen in the anatomy and the physiology of human body (‘algebra’ — brain death defined, mathematically, through study of group structure), invariance under deformations is appreciated (‘topology’ — spinal column deformed because of scoliosis, kyphosis or lordosis, which is studied using static, dynamic and crystal-structure-based models), properties of numbers are studied (‘number theory’ — numbers giving height, mass, mid-upper-arm circumference) as well as inferences are analyzed (‘logic’ — upper limits of optimal mass-for-height). To appreciate the point further, an ‘anthropometrist’ is limited to recording heights, but an ‘anthromathematician’, not only, must measure heights, but also, must plan the session to be able to determine accuracy, precision and reproducibility of the techniques used. At the start of each session, the professional must align the scale at the same time ascertaining that the surface is level and checking the equipment against agreed-upon standards. At the end of every session, the incumbent must estimate consistency of collected data.

This paper discusses pedagogical challenges and opportunities offered by ‘Program of Sport and Anthromathematics’ approved by the Board of Studies of Department of Mathematics, University of Karachi in 2014. The program was, subsequently, approved on behalf of Board of Faculty of Science and Academic Council by the respective competent authorities. The scheme of studies may be broken down in 3 components — formal teaching, examinations and projects. The program should train the student in problem solving at various levels. The quality of an academic program depends, largely, on the evaluation system.

The pedagogical opportunities provided by project-related activities may be used to refine concepts and broaden student’s horizon. However, the true potential of the usefulness of these simple activities in teaching a topic that deeply affects our health, lies in the torch bearer of learning: “A good teacher is a master of simplification and an enemy of simplism” (Louis A. Berman).
The Evolution of Anthromathematics

There has been a long-felt need to apply the power of mathematics to the study of structures (anatomy) and functions (physiology) of the human body. Jenkins (2008) described kinship of anthropology and mathematics. ‘Anthropology’ became a quantitative science as ‘anthropometry’, which was given the rigor 6-year ago as ‘anthromathematics’ (Kamal, 2010; 2011a). Although, a relatively new branch of mathematics, 2 conferences have been held on the topic, viz. ‘the First Conference on Anthromathematics’ in 2013 and ‘the Second Conference on Anthromathematics and Sport Mathematics’ in 2014. MPhil courses, Anthromathematics I and II, and PhD courses, Modeling and Simulation of Biological Systems I and II, are being, regularly, taught in Department of Mathematics, University of Karachi (MPhil courses since 2011; PhD courses since 2010). An enthusiastic research program has, also, been established. 2 PhD (3 more submitted) and 5 MPhil degrees have been awarded. Research accomplishments in the area of child growth-and-obesity modeling may be summarized as:

- The first- to the fourth-generation solutions (Figure 1) of childhood-obesity problem given (Kamal, 2015e; Kamal et al., 2013b; 2014b; 2016a, b)
- Height- and mass-measurement techniques enhanced to least counts of 0.01 cm (centimeter) and 0.01 kg (kilogram), respectively (Kamal, 2010), which were recently upgraded to 0.005 cm and 0.005 kg, respectively (Kamal et al., 2016b); manual for anthropometry prepared (Kamal, 2016a).
- Extension of CDC Growth Charts and Tables to include 0.01th, 0.1th, 1st, 99th, 99.9th and 99.99th percentiles, in addition to the percentile range, 3rd to 97th, so that extreme cases could be handled (Kamal & Jamil, 2014)
- Putting forward concepts of optimal mass, quantitative estimates of obesity/wasting as well as tallness/stunting both of them expressed as percentage (Kamal et al., 2011a), estimated-adult BMI — BMI stands for body-mass index (Kamal & Jamil, 2012), build of a child (Kamal & Khan, 2015), use of height-percentile trajectories instead of growth velocity (height velocity), pseudo-gain of height/mass (Kamal et al., 2014c),
classification of nutritional statuses (introduction of energy channelization I-III) and index representing severity of acute malnutrition (Kamal, 2015a).

- ‘Growth-and-Obesity Roadmaps’ of children and their parents giving 6 month-wise recommendations to achieve specific values of height (for children) and mass (for children and their parents) on the date of checkup for each consecutive month, along with lifestyle adjustment, diet and exercise plans (Kamal, 2015a; Kamal et al., 2015b).

During the Second Conference on the subject the evolution of anthromathematics was highlighted (Kamal et al., 2014d). The author spent about 30 years in the area of modeling of the human organs and 3-D bioimaging before, formally, launching the subject in 2010. The work included 3-D-modeling of the human spinal column — static (Kamal, 1982a; b; 1996a), dynamic (Kamal, 1996c) and crystal-structure-based (Kamal et al., 2012). These models were able to generate shape of the spinal column from surface measurements (Kamal et al., 2014a; 2015a; 2016d). Anthromathematics of the human spinal column was elaborated in Prof. Dr. Zainuddin Kamaluddin Kazi and Prof. Dr. Mohummed Ali Shah memorial lecture delivered during the First Conference on the subject (Kamal et al., 2013a). Anthromathematics of MUAC (mid-upper-arm-circumference) measurement was described in invited lecture delivered during ‘the International Conference on Physics and the World of Today’ (Kamal et al., 2011b). Standing-wave model of the human heart was able to generate shape of heart from surface measurements of coordinates of PMI (points of maximum intensity) of heart sounds generated from pulmonary, tricuspid and mitral valves (Kamal, 1992; Kamal & Siddiqui, 2002). Organ-shape generation from surface measurements motivated the author to think of the discipline ‘anthrotopology’, which was, formally, introduced during ‘the International Conference on Condensed-Matter Physics and Engineering’ (Kamal et al., 2012). Although, Wilson (2009) mentions the word ‘anthrotopological’ in the context of urban studies that an individual acts as an anthrotolopogical record, registering aspects such as the volition and the extension of urban representation, the concept is, entirely, different from the notion put forward by the author. Author’s PhD work involved modeling of global-electrocortical activity of the human brain. He developed the covariant (Kamal et al., 1989), the generalized-coupling (Kamal et al., 1992) and the covariant-generalized-coupling (Kamal & Siddiqui, 1997) models. This exercise resulted in generation of mathematical definition of brain death using group structure (Siddiqui et al., 1993), which laid the foundations of ‘anthroalgebra’, formally, launched 3-year ago (Kamal, 2013a). Long before officially defining ‘anthroimaging’ during the First Conference on Anthromathematics (Kamal, 2013b), the author started working in this area by
constructing a moiré frame (Kamal & Yosufzai, 1979). Main contributions were simultaneous recording of moiré and raster using selective-optical filtering for use in gait analysis (Kamal et al., 1996), edge-based moiré (Kamal, 1996b) and edge-based raster (Kamal, 2008a). During ‘the First Undergraduate National Computing Conference’ the concept of 3-D-spinal-column surface analysis (3-D-bone scanning) by combining moiré fringe topography and rasterstereography with backscatter-X-ray-scanning technology was put forward (Kamal, 2013b). The most-recent additions were dotted-rasterstereography (Wasim et al., 2013) and dotted-raster stereophotogrammetry (Kamal, 2014a), the last one different from rasterstereography in the sense that stereophotogrammetric technique generates both height and curvature maps — combining the properties of moiré fringe topography and rasterstereography. Earlier, Geng et al. (2009) mentioned the word ‘anthroImaging’ only once in a detailed description of their patent application without defining or elaborating the term.

One of the areas of interest is the interaction of mathematics and sport. De Mestre (1990) wrote a monograph on the mathematics of projectiles in sport. The author highlighted role of mathematics in sport sciences and technologies in a presentation given during ‘the Thirty-Fifth All Pakistan Science Conference’ (Kamal, 2008d). Williams et al. (2008) discussed some basic ideas of mathematics of science and sport. Haigh (2009) reviewed such topics mainly based on probabilistic or statistical considerations. Although, Schutz (1980) delineated a field of sport studies named as sport mathematics and listed topics of study using tools of mathematical analysis, putting forward arguments, which supported the identification of mathematics and sport as a sub-discipline within sport studies and Hopper (1984) mentioned sport mathematics as a proposed research area, ‘sport mathematics’ as a formal subject, with a well-defined ‘Program of Studies’, was put forward by the author 2-year ago (Kamal, 2014b). Anthromathematics became generalized as ‘anthrodynamics’ (Figure 2) through

Fig. 2. The evolution of ‘anthrodynamics’ — first appeared in Kamal (2013a)
<table>
<thead>
<tr>
<th>#</th>
<th>Name of Branch</th>
<th>Date Introduced</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anthromathematics</td>
<td>March 22, 2010</td>
<td>Kamal (2010; 2011a; b; 2015b); Kamal & Jamil (2013); Kamal et al. (2014d)</td>
</tr>
<tr>
<td>2</td>
<td>Anthrotopology</td>
<td>December 27, 2012</td>
<td>Kamal et al. (2012)</td>
</tr>
<tr>
<td>3</td>
<td>Anthroalgebra</td>
<td>April 10, 2013</td>
<td>Kamal (2013a)</td>
</tr>
<tr>
<td>4</td>
<td>Anthrogeometry</td>
<td>April 10, 2013</td>
<td>Kamal (2013a); Wasim et al. (2013)</td>
</tr>
<tr>
<td>5</td>
<td>Anthrodynamics</td>
<td>April 10, 2013</td>
<td>Kamal (2013a); Kamal & Jamil (2013)</td>
</tr>
<tr>
<td>6</td>
<td>Anthroimaging</td>
<td>September 5, 2013</td>
<td>Kamal (2013c; 2014a); Kamal et al., (2014a)</td>
</tr>
<tr>
<td>7</td>
<td>Sport Mathematics</td>
<td>May 17, 2014</td>
<td>Kamal (2014b)</td>
</tr>
<tr>
<td>8</td>
<td>Astro-Anthromathematics</td>
<td>December 29, 2015</td>
<td>Kamal (2015c)</td>
</tr>
<tr>
<td>9</td>
<td>Astro-Anthrodynamics</td>
<td>May 01, 2016</td>
<td>This paper</td>
</tr>
</tbody>
</table>

Fig. 3. Branches of mathematics related to ‘anthromathematics’

a combination of applied-mathematics tools (optimization, dynamical-system analysis) as well as ideas from physics, biology, mathematics and computer science. Anthrodynamics could be considered a branch of mathematical sciences, which may have the potential to shape health-care systems of the third millennium — compare the scope of ‘anthrodynamics’ with ‘astrodynamics’, a well-established discipline of mathematics. Figure 3 lists different branches of mathematics, which emerged from anthromathematics; the challenges and the opportunities presented by the last two require further elaboration.

The techniques from ‘astromathematics’ (a branch of mathematics put forward by the author on October 8, 2012) could be combined with ‘anthromathematics’, e. g., techniques of controlling both the position and the velocity in a satellite-
launch vehicle could be adapted to generate ‘Growth-and-Obesity Vector-Roadmaps’ of children (Kamal et al., 2016a, b) by matching slopes as well as values in the height- and mass-percentile trajectories — dynamical-system approach (Kamal, 2015e). 3-D movements of gymnasts may be analyzed by adapting mathematical framework used in the telemetry techniques for tracking rocket maneuvers (astromathematics) as well as robotic-arm control (control theory). The author proposed a new branch of mathematics ‘astro-anthromathematics’ recently, which should combine the strengths of astromathematics and anthromathematics (Kamal, 2015c).

Taking up ideas from control engineering, physics, astrodynamics, mathematics, computer science and information technology to interface them with human biology may open up new venues of research and engineering applications. Such a body of knowledge could be termed as ‘astro-anthrodynamics’.

Research, Teaching and Community Outreach

Teaching programs, like ‘Program of Sport and Anthromathematics’, without input from research faculty, working on indigenous problems, and without output trickled down to serve the community, they are part of, may be visualized as a tree stem (teaching) without roots (research) and without branches carrying leaves (community outreach). Figure 4 gives the hierarchy of research, teaching and community outreach (Kamal, 2015f). A program of studies should get its lifeline blood from research carried out to solve indigenous problems. The program should have deep roots in the community, which supports it through human resources (bright students), financial resources (funding) and emotional resources (goodwill and encouragement). The Early-Talent-Research-Participation Program, conducted by the author during 2002-2010, is an example of such community-outreach activity.
Fig. 5. Key courses offered in ‘Program of Sport and Anthromathematics’; students coming from mathematics have to complete non-credit foundation course in physical education and sport sciences and vice versa — details given in Kamal (2015d)

Objectives of ‘Program of Sport and Anthromathematics’

‘Program of Sport and Anthromathematics’ has been described in an earlier paper published in the same journal (Kamal, 2015d). This program has been developed after considering mathematics research, teaching and community outreach challenges and opportunities (Kamal, 2004; 2005a), in line with the guidelines for mathematics programs prepared by Higher Education Commission, Government of Pakistan (Kamal, 2005b; 2008b) as well as suggestions given by other mathematician-educationists (Holton, 2001; Sriraman & English, 2010). Highlights are shown in Figure 5. The main objectives of Program of Sport and Anthromathematics are listed below:

- To instill habits of creative thinking, critical analysis (Kamal & Siddiqui, 1986) and rigorousness, combined with the entertainment aspect of sport sciences so that enrolled students start enjoying sport and anthromathematics
- To make the student appreciate the uniqueness of mathematics (symbolism related to quantity and space) as the language of all sciences, the tool
of the tools, having the power of generalization and the power of application — a subject, which transcends cultural, ethnic, national and religious boundaries

- To develop ability in students to formulate a problem by developing solid and correct concepts using the language of mathematics by training the incumbent to think and to reason with precision (Kamal, 2003; Kamal et al., 2009)
- To equip students with the tools required and the mathematical techniques applied in the sport industry and the health-care organizations (Kamal, 2008c)
- To propose mathematical solutions to indigenous problems arising in the sport industry and the health-care sector (Kamal, 2008e)
- To motivate and to empower the students so that they can become leader-integrators of sport-and-anthromathematics community (Kamal, 2013d)

The following quote from one of my students shows the process of empowerment:

“You urged me to try, when I gave up ….
You encouraged me, when I attempted ….
You instructed me, when I progressed ….
You appreciated me, when I achieved ….
Dear Sir, you have helped me in every way.”

(Hassan Jalees, MSc, Mathematics, University of Karachi, Class of 2003)

Components of ‘Program of Sport and Anthromathematics’

The plan of studies has 3 components — formal teaching, examinations and projects (Figure 6). These three should be integrated in such a way that each one

![Fig. 6. The three ingredients of plan of studies of ‘Program of Sport and Anthromathematics’](image)
reinforces the other two. Formal teaching should prepare the student to do well in the examinations and complete the assigned project during the summer term.

Topics taught in ‘Program of Sport and Anthromathematics’ should include recently added body-of-knowledge, some of which should be from research conducted in laboratories associated with the program.

In order that a professor can conduct the assigned course properly as well as find some time for research and administrative duties, human assistance should be available in the form of:

- dedicated secretary/office assistant for each course to take care of paperwork
- 4 teaching assistants, one each to:
 i) conduct discussion and problem-solving sessions
 ii) conduct and grade quizzes, hourlies and final examinations
 iii) conduct laboratory sessions, grade laboratory reports and arrange laboratory final examinations
 iv) work with students to help them complete research proposals and projects

The breakdown of grades (marks) should be as under:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hourlies (best 2 out of 3 counted; each hourly has 20% weightage)</td>
<td>40%</td>
</tr>
<tr>
<td>Quizzes (best 5 out of 8 counted; each quiz has 4% weightage)</td>
<td>20%</td>
</tr>
<tr>
<td>Final Examination (separate passing head)</td>
<td>40%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Formal Teaching

Formal teaching is the core activity of the program. Efficiency (conduct of classes according to schedule, coverage of all topics, course outline and course breakdown into date-wise lecture-topics) and effectiveness (students understanding course contents, becoming motivated and transforming into knowledgeable citizens) are the basic requirements. The average students learn most of the topics, the weakest students are brought into the mainstream and the over-smart students are envisioned, at the same time their questions are dealt in such a manner that the classroom kinematics and dynamics are not disturbed (Kamal, 2016b). To keep the students attentive and make them interact with fellows other than their own friend-groups as well as break mischief-making groups, it was suggested to shuffle students once during a session (Kamal, 2015f).

Another way to generate enthusiasm among students is ‘hands-on training’, through carefully-designed lab work:
“Tell me, and I’ll forget….
Show me, and I may not remember….
Involve me, and I’ll understand….
”
(Native American Quote)

The number (2 + 1) after a course title in Figure 5 indicates that 2 credit hours are reserved for theory (lectures, discussion and problem-solving sessions), whereas one hour is for laboratory. There should be enough functioning-equipment sets so that not more than 2 students perform on a set. The experiments should correspond to the topics covered in theory classes. In addition, they should, not only, consist of mere collection of data, calculations and computation of results, but also, encourage the student to think deeply so that the future researcher should investigate underlying causes and effects, to understand the true spirit and the purpose of experimentation (Kamal, 2007). The great scientific experiments serve to develop the content of a theory (decompose a simple phenomenon, demonstrate underlying unity within apparent variety, find hidden mechanism of a known effect, provide existence evidence), elaborate the formal aspects of method (decide between rival hypotheses, exploit an accident, explore the characteristics of a naturally-occurring process, find the form of a law, inductively, interpret null results, use models to simulate processes) and establish techniques (determine accuracy and care in manipulation, show power and versatility of apparatus). Some thought-provoking experiments may be designed on the following lines (Kamal, 2009):

- Study of variation of intensity with distance from multiple sources (point, line, laser) using photocell
- Appearance (disappearance) of Newton’s rings if plano-convex lens is moved away (towards) the sodium light source (study of fringe movement using edge-based algorithm to be included for advanced undergraduate laboratory)
- Height and curvature maps of solid objects (cylinders, spheres, cones, wedges) using moiré fringe topography and rasterstereography (edge-based moiré and edge-based raster to quantify infinitesimal movements might be suitable for graduate laboratory)

The teaching assistant assigned to a laboratory course should run experiment on each apparatus at the start of a given semester to make sure that all sets are performing properly. In addition to grades of each report, teaching assistant should record results of experiment quoted by each group. At the end of the semester, the assistant shall have accumulated 10 or more results performed by different groups on each set. These could be examined to determine equipment performance during the semester.
Although, the classes end and the students are given preparatory leave a few days ahead of start of examination period, the author has continued the practice of maintaining 2 dedicated hours for the last-minute guidance session (attendance optional) 2-days before the scheduled examination of that particular course. The rationale is that the students start studying the subject matter as the examination date approaches. The problems then pile up, which need to be discussed with the instructor. In the guidance session key concepts may be revised and students’ problems addressed.

Problem-solving approach is emphasized during the study sessions. Problem solving in the classroom (Kamal, 2008c) prepares the student to set-up problems, which could be taken up in laboratory (Kamal, 2007) and eventually field-tested and implemented as an industrial product (Kamal, 2008e). Classroom problem solving should consist of 2 sets — the first set should consist of problems to be solved on board by teaching assistant; the second set should be homework problems, which are turned in and graded (solutions put in the seminar library). At the start of course, the instructor should take a pre-test (non-credit) so as to know deficient areas of each student to work on during the term. The course should start with revision of key concepts, at the end of every lecture session, the instructor should ask some students to give one-minute summary of lecture, the last one-minute summary to be presented by the lecturer. The next lecture should start with a one-minute summary of last lecture as well as learning objectives of current lecture. Two lecture sessions should be followed up by one discussion session (no new concepts or techniques taught, but the already covered ones presented in a different manner with fresh examples) and one problem-solving session. There should be a review session arranged before each hourly and before the final examination, covering key concepts, techniques and derivations (theoretical portion) as well as solution of a new problem-set (specially prepared for review session). In addition, during the final-exam-review session there should be discussion about the science and the art of paper solving as well as solution of past papers.

The goal is to prepare the students to solve unseen problems in the examination (the ones not solved in problem-solving session, homework or review session). At the end of the course, the instructor should administer a post-test (non-credit), covering the same ideas, concepts and techniques, tested in the pre-test (but not the same questions, so that memorizing questions and their solutions should not help) to find out effectiveness of delivery of material. In the words of Prof. Dr. Sheldon Rottenberg of SUNY Downstate Medical Center, “A best teacher is not the one, who knows most, but the one, who gives most.”
Examinations
The purpose of examinations is to test the ability of student to digest contents with sufficient depth and breadth so that the incumbent becomes capable to understand significance of taught discipline and relationship with other disciplines. The quality of examinations determines the quality of a teaching program, as this is a direct measure of knowing how well contents are delivered to students. The main challenges in the construction and the conduct of examinations may be summarized as:

- Examinations should be constructed in such a way that an average student should be able to solve the entire paper in 80% of the allotted time, leaving the rest of 20% for revision. The author adapted the strategy to, himself, solve the paper, note down the time spent in solving each question, total this time and give the students 3 times the amount of time he spent to solve the entire paper, realizing that instructor is an expert of the subject, whereas the student is trying to comprehend and digest the subject matter.
- 50% of the paper should be so easy that an average student should be able to solve it easily. 25% of the paper should be for the above-average student and the final 25% of paper should be for the smart student. The over-smart student may, still, do something unusual, like solving the entire paper in half the allotted time and developing a new model/working on a new line of calculation during the rest of time. To cite an example, the main calculations of (Kamal & Husain, 1978; 1988) were done during the final examination of MSc (Final) Course, Lattice Dynamics.
- If the paper is easy, grading should be strict; if the paper is hard, grading should be lenient. Ideally, grading distribution should be a bell-shaped curve, indicative of a balanced paper. In case, it is skewed to the left (paper hard/checking strict) or to the right (paper easy/checking generous), a scaling of grades should be done to convert the distribution to a bell-shaped curve.
- To curb cheating/use of unfair means during the examination, the following measures are suggested:
 a) Arrangement of a sufficient number of invigilators, who are experienced and dedicated to duty
 b) Honor-statement to copied from paper and signed by the examinee, which states, ‘My signatures, below, testify that I am the person, whose name and photograph appear on the Admit Card. Upon my honor, I declare that the following work is my own, completed without giving or receiving unacknowledged help, without copying, or the use of any unfair means.’
 c) No borrowing or lending by students of pen, pencil or any other item, in particular, calculators (must bear easily-visible name)
 d) Seating layout during the conduct of examination recorded
e) Multiple-format papers, even for subjective portion (papers are mixed in such a way that ‘A’, ‘B’, ‘C’ and ‘D’ formats appear, one after the other, so that a student sitting behind receives a different format from the one sitting in front)

University-of-Karachi Examinations

In order to make the students start and finish at the same time, the front side of question paper contains only paper format, instructions, time-chart layout and honor-statement. Students are distributed answer books and paper facing the front side 10-minute ahead of start time. There is a format column on the upper-right-hand corner of the answer book, which has to be filed out by the student according to the distributed paper. The student has to do 3 more things. On the front page of the answer book, draw layout of the time chart, copy honor statement and sign the statement. Filled-out time-chart and signed honor-statement each carries 2 marks. The timings entered by students in time-chart could, later, be processed using software to find out how much time each student took to solve a certain question. Ideally, this time distribution should be a bell-shaped curve, the mean of which should be 3 times the amount of time taken by the instructor to solve the same question.

As the clock ticks the announced time, the instructor starts stopwatch/countdown timer and announces ‘start now’. The students turn the paper and start solving the questions in the answer book. They are not allowed to write anything on the printed-paper, except their names on both sides, in order to prevent exchanging of paper. When the allotted time ends, the instructor announces ‘all pens down’. The students have to put the question papers inside their answer books and close them so that the top page faces them. A penalty is imposed on any student working after this announcement.

The answer books are (serial) numbered on the upper-left-hand side by the instructor, this number, also, appears on the yellow-attendance sheet as a serial number in a column added on the left side. The students are required to sign their attendance in the same row bearing the serial number. This serial number is, also, used to generate seating layout (to keep a permanent record of who is sitting behind whom, to assist in deciding the case of copying in case a match of text is found in the answer books). On the right side of the attendance sheet, another column is added showing the format of paper. At the end of examination, the answer books are turned in along with question paper (name matched on question paper and answer book) and a tick mark is made on a photocopy of the filled attendance sheet in front of the serial number (which is written on the upper-left-hand corner of the answer book). Hence, this real-time counting-
system eliminates the need of post counting scripts. It can, also, pinpoint, in real
time, any script, which is not turned in.

The examination paper (in PDF format) is uploaded on the author’s homepage
12 hours after the examination ends. A PDF version of solution is prepared,
which is shown on multimedia projector and discussed with the students during
designated time slot. For part I of course, paper is solved in the first class of part
II of course.

In the examinations conducted at University of Karachi, there is a restriction on
the number of photocopies and laser printing, which could be done from institu-
tional budget. Hence, the paper is designed in a compact form with only 2 pages
covering the entire material. The front page consists of instructions, but have no
examination questions. The back page contains all the questions. The answers
are to be written in the supplied answer book separate from the question paper.
The additional tasks are (by students) drawing time-chart, (by invigilators) the
exercise of attendance matching, paper-name matching, (by grader) finding
scores of all questions and transferring them to front panel to get the total score.

AKU (the Aga Khan University), IBA and SZABIST Examinations
For the examinations conducted at the above institutions, there is no restriction
on photocopying. Hence, a more structured paper pattern is followed. Paper
consists of 5 or 6 pages, with the front (and sometimes the last page) containing
instructions. Questions are typed starting page 2, with a column on left-hand side
to enter grade of each part. Question has to be solved in the allotted space and
answer entered in the given box given on right-hand side so that the answer is
easily visible to the grader. On the bottom of each page (one page contains only
one question), there is a box to write down time spent in solving this question.
Since the paper is photocopied only on one side, the backside of page (facing the
printed question) may be used for rough work. There is a box at the bottom to
enter sum of all marks on the same page. A total of all these entries in the bottom
left generate total score, which is entered on the second page (score not entered
on top page to protect privacy) along with tentative grade based on all hourlies
(conducted at the end of each month), quizzes (conducted weekly) and
assignments to date as well as total number of absents accumulated by the
student till the announcement of this result. The schedule is arranged in such a
way that tentative grade, after the first hourly, becomes available to student
before the deadline to withdraw from a course. This makes it possible for a
poorly performing student to withdraw from the course instead of having a bad
GPA reflecting on transcript. A compact solution of each hourly is prepared
(usually 2 pages), a copy of which is attached at the end of graded paper. The
students look at their solutions and discover their mistakes by looking at
instructor’s solution. Since, quiz consists of only one page, generally consisting of 2 questions, solution is written on the same page, photocopied and attached with the graded quiz. The students have to return all graded hourlies, quizzes and their solutions after looking at them.

In order that the students start at the same time in each hourly and the final examination, the test paper is handed over stapled at the bottom. Format is, already, written on the paper. The students write their names on the first page, write honor statement and sign it. At the signal, ‘start now’, they open the staple, write their names on top of each page and start working on the paper.

Projects
Projects serve the purpose of training students to conduct small-scale research and present either as conference presentations or papers in ‘Student Journal of Research’. Projects are conducted in groups of 4 or 5 students. During the first semester, the students select a research topic, conduct test runs/simulate, analyze the data and prepare a research proposal. Contribution of each member of group is, clearly, mentioned in the proposal. The students give a collective presentation to justify the work, attended by the instructor, respective teaching assistant and the fellow students. Each member of the group presents for 1 to 2 minutes. The presentation is videotaped and replayed. The first critique is by the presenter, the second one by the fellow students, the third one by the teaching assistant and the fourth one by the instructor (course supervisor).

An anthromathematics project requires collection of data on human subjects. The research proposal has to be approved by ‘Institutional Review Board’ and must conform to the ethical and the human-right standards applicable in the region (Kamal et al., 2002; Kamal, 2016a).

Research proposals should explore the anatomy of a research problem, which consists of answering 3 questions — why? what? and how?

These are explained below (Figure 7):

- Why to conduct a research project?
 The answer should highlight significance of the problem at the same time elaborating benefits to society, in particular, the local community, which is supporting the research team.

- What the research project is about?
 A clear and a precise statement of problem after discussing the background of problem, which explains technical terms and definitions and, possibly, design of the study.
Fig. 7. The anatomy of an indigenous research problem
— first appeared in Kamal (2015f)

- *How to conduct a research project?*

 This gives research protocols, which include description of mathematical modeling involved, mechanism of data collection, data processing and analysis using mathematical-statistical techniques and softwares as well as expected results.

During the summer semester the student groups conduct field study, collect and analyze data using mathematical-statistical techniques. During the second semester the groups finish writing their reports and present the completed projects. These presentations sometimes include live demonstrations of the techniques, which are critically analyzed using the same hierarchy adopted for research-proposal presentation.

SF Growth-and-Imaging Laboratory is well equipped with equipments for anthropometry, image recording and image processing, which could be used by students to complete their projects. Figures 8a–e provide a glimpse of some activities, which are conducted in this laboratory. Breakdown of marks for courses Project I and II is given in appendix.

Additional Activities

Co-curricular activities, which broaden the scope of a degree program educating the community about the academic endeavor (a pre-requisite to generating funding from community) include debates on issues in sport and anthromathematics, editing and contribution in newsletters and arrangement of movie shows followed by popular lectures. Open houses and cyber science club (internet discussion forum for high-school students) may motivate the youngsters, who would be future enrollees in the program.
On a more serious note, participation and organization of weekly seminars (student seminars, colloquium and specialized seminars), participation and organization of conferences as well as publication of students’ research journal develop students’ soft skills. There should, also, be workshops for professional-skill development and short courses.

Pedagogical Opportunities and Challenges

Simple anthropometric measurements, like measurement of height, offer a wealth of pedagogical opportunities in biology, chemistry, engineering, health and safety, mathematics, physics and Quranic studies (Figure 9). Height and mass are the most important parameters in diagnosing problems relating failure-to-grow and failure-to-thrive (Kamal, 2016a). It has been observed that care is not taken to record these measurements properly in many studies. Figures 10a-c show common mistakes in recording of mass. In some studies, students are not undressed for anthropometry, with the result that their proper postures and complete inhaling
Biology The metabolism of food

Chemistry The process of conversion of food resulting in tissue synthesis (the phenomenon of height gain)

Engineering Levels surface needed, mounting of engineering tape (vertical mounting checked by plumb line)

Health and Safety Evaluating nutritional status, failure to gain height may be a signal to some physical problem (failure-to-grow); failure to gain height and achieve developmental milestones may indicate a much deeper problem (failure-to-thrive) — pediatrician should look for indications of abuse (neglect, peer pressure/bullying, verbal, physical, sexual) in this situation (Kamal, 2011c)

Mathematics Significance of serial measurements, plotting of graph, computation of slope, time-series concept, prediction of adult height, comparison with cut-off height for armed-forces career

Physics Techniques of measurements, achieving reproducibility, applying equal weight on both feet

Quranic Studies The Holy Quran (sacred book of Muslims) mentions appointment of Tālōt as king over Israelites (verse 247, chapter 2, Suratul-Baqara). It is mentioned that Samuel (peace be upon him) had a rod. It was told to Israelites that their king would be as tall as the length of rod — comparison of height with agreed-upon standard

Fig. 9. Pedagogical challenges and opportunities offered by the activity of measurement of height — first appeared in Kamal (2016)

during the measurement process may not be checked (there is a slight difference in the values of heights and masses during complete inhaling and complete exhaling). The NGDS Team has been, constantly, improving least counts for measurements of heights and masses and insisting that students follow standard protocols during measurements of height, mass and MUAC (Kamal et al., 2013c). Pedagogical opportunities generated by the activity of measurement of

Fig. 10a-c. Common errors in measurement of mass — hair-band not removed; feet not positioned correctly and student holding on to beam scale — first appeared in Kamal et al. (2013c)
Biology	The metabolism of food
Chemistry	The process of food conversion resulting in gaining energy, sweating
Engineering	Need of level surface, checking if the weighing machine, itself, is level
Health and Safety	Rapid loss of weight signals physical problems, unutilized food results in fat deposit, contributing to obesity
Mathematics	Significance of serial measurements, plotting of graph, computation of slope, concept of time series, prediction of adult mass (weight), optimal mass-for-height, net-mass computation from gross mass (Kamal, 2010) — net mass is defined as mass with zero clothing on, gross mass is the mass recorded in indoor clothes
Physics	Measurement techniques, reproducibility of measurers, exertion of equal weight on both feet
Quranic Studies	Maintaining optimal weight-for-height is encouraged in the Holy Quran (verse 29, chapter 17, *Surah Bani-Israel* or *Suratul-Asra*) by stating that one should exercise discretion in spending, neither to spend too much like burning candles at both ends nor to become stingy (Kamal & Jamil, 2012)

Fig. 11. Pedagogical challenges and opportunities offered by the activity of measurement of mass (weight) — first appeared in Kamal (2016)

mass are listed in Figure 11. The active and the inquiring minds of the students would pose pedagogical challenges provided opportunities to think, to explore, to question and to reason are provided (Kamal & Siddiqui, 1986). Below are given some ideas to enhance height- and mass-measurement techniques, reproduced from Kamal *et al.* (2016a), a food for thought for the over-smart mind (Kamal, 2016b):

- Use of circular scale (just like in micrometer screw gauge) instead of Vernier scale to reduce least count of height scale from 0.005 cm, *i.e.*, 0.05 mm (Kamal *et al.*, 2016b) to 0.001 cm, *i.e.*, 0.01 mm — similar procedure to reduce least count of beam scale from 0.005 kg, *i.e.*, 5 g (Kamal *et al.*, 2016b) to 0.001 kg, *i.e.*, 1 g, the constraint being the matching of mass of circular scale with mass of the sliding weight
- Wheatstone-bridge-type system to ensure equal weight exertion on both feet for measurement of height as well as mass
- Symmetric moiré (Figure 8d) of back (about the sagittal plane) during mass recording to ascertain proper posture
<table>
<thead>
<tr>
<th>Biology</th>
<th>The metabolism of food</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>The process of food conversion resulting in proper muscle and fat development</td>
</tr>
<tr>
<td>Engineering</td>
<td>Need of level surface, checking if the stool, itself, is level</td>
</tr>
<tr>
<td>Health and Safety</td>
<td>Evaluating nutritional status (Shakir strip has red and green regions indicating normal and at-risk conditions, both on the lower and the higher side), inequality in MUAC may be indication of trunk deformity, in particular, scoliosis (an improper exercise routine may, also, result in asymmetric muscle development)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Measurement of circumference, midpoint of distance between acromial and radial landmarks, significant difference between right and left arm as threshold of trunk-deformity risk, calibration — conversion of MUAC taken on clothing to that taken on body (Kamal, 1986; Kamal et al., 2011c)</td>
</tr>
<tr>
<td>Physics</td>
<td>Measurement techniques, reproducibility of measurers, exertion of optimal pressure on arm, use of a mirror or camera/monitor to visualize opposite side of hand in order to make sure tailor’s tape is horizontal</td>
</tr>
<tr>
<td>Quranic Studies</td>
<td>Measurement of right MUAC should precede left MUAC. According to the Holy Quran, men who receive their deed record in right hand are successful and those who receive it in their left hand are doomed (verse 19-37, chapter 69, Suratul-Haqq)</td>
</tr>
</tbody>
</table>

Fig. 12. Pedagogical challenges and opportunities offered by the activity of measurement of MUAC — first appeared in Kamal (2016)

- Symmetric moiré of front (about the sagittal plane) during height measurement to make certain upright posture

Pedagogical opportunities presented by the activity of measurement of MUAC are listed in Figure 12.

Conclusion
Mathematics is the unique discipline, which has the power of generalization and the power of application. Result in one dimension may be generalized to n dimensions. A mathematician develops the power to visualize abstract concepts. The distinction of mathematics to bring rigor to proofs and exactness to calculations makes it tool of the tools. The teaching of a concept in physical mathematics should include rigorous proof, physical interpretation and application. For example, proof using ε_{ijk} notation of vanishing of curl of a gradient of potential should be followed by interpretation of curl as rotation at a point and gradient as maximum rate of change between two equipotential surfaces. Applications may include definitions of electric potential and gravi-
tional potential. The student should be trained to link concepts in different scenarios, e.g., fast freeze in structural biology and in fertilizer production (similarity of processes) as well as electrical and gravitational potentials (similarity in mathematical expressions). The approach of a mathematician differs from the approach of a physicist — conservative forces are recognized by a mathematician as having no functional dependence on velocities or higher derivatives (such forces are functions, solely, of coördinates), whereas a physicist would consider work done around a closed path to be vanishing. A mathematical equation gives clues to the underlying physics, whereas physics guides the form of the resulting mathematical equation (appearance of tensor in an equation suggests system anisotropy and vice versa).

Anthromathematics combines the beauty of mathematics with the versatility of a living human body. An example is solution of problem of electrical-signal transmission in the human brain (neuron-synaptic system), which involved 10^{32} entries by solving a $10^{16} \times 10^{16}$ matrix. The process generated a mathematical definition of brain death. The problem was solved using the rigor of mathematics at a time (1987-1990), when the fastest supercomputer of the world existing (Cray XL III at the Los Alamos Laboratories) could not even store entries of this matrix. For those, who do not want to get involved in such a sophisticated mathematical endeavor, 1st to 4th generations solutions of childhood-obesity problem are available, the computations involve only linear and box interpolation (using only two-point form of straight-line equation). For still those, who want to work with equipments, there is a task to enhance height and mass scales.

The Holy Quran has emphasized two topics in detail, our universe and our self — the two extremes dealing with the largest distances (measured in parsec) and the smallest distances (measured in microns). Creation of the universe is studied in cosmology, the heavens and the earth are taken up in astronomy. Motion of planets is explored in astromathematics and astrodynamics. The human body is deliberated upon in anthromathematics and anthrodynamics. The author had a chance to study and to work in the areas of cosmology, astronomy and astrodynamics. In the near past, it was suggested to combine ideas from astromathematics and anthromathematics to bring out a new field, astro-anthromathematics. While this may be a step forward, combining the strength from physics, control theory and dynamical-system analysis should have the potential to reach out from the tiny DNA to the vastness of the cosmos through astro-anthrodynamics, which may provide answers to the question of existence of life on other planets, in other galaxies or alien life-form, at the same time improving the quality of life for us mortals. This would be the true spirit to
subdue whatever is in the heavens and the earth, as enjoined by *Allah Subhahahu wa Ta‘āla* in the Holy Quran.

Acknowledgments
The author is indebted to Prof. Dr. Shagufta Shahzadi, Professor of Special Education and Dean, Faculty of Education, University of Karachi, for inviting me to give keynote lectures during the *Karachi University First to Third Educational Conferences* and motivating me to write this paper. Thanks are due to Prof. Dr. Mohummed Pervaiz Iqbal of Department of Biological and Biomedical Sciences, the Aga Khan University Medical College, Karachi, for bringing to my knowledge the saying of Prof. Rottenberg, included in this paper.

Appendix
Breakdown of grades (marks) for the courses Project I and II are given below:

<table>
<thead>
<tr>
<th>Proposal/Project § (60%) + Journal Club ¶ (20%) + Guest Seminars $ (20%)</th>
<th>= 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>§oral presentation 10% + poster presentation 10% + written report 40%</td>
<td>¶critical review of a paper — oral presentation 10% + written report 10%</td>
</tr>
<tr>
<td>$intelligent questions/comments 10% + one-page critique of each seminar 10% — abstract of talk + e-mail address of speaker provided a week ahead of scheduled presentation</td>
<td></td>
</tr>
</tbody>
</table>

References

26. Kamal, S. A. (2011a, February 19). From anthropometry to anthromathematics. Faculty of Medicine, the Ziauddin University, Karachi, Pakistan (research seminar), abstract: https://www.ngds-ku.org/Presentations/Ziauddin.pdf

https://www.ngds-ku.org/Presentations/Spinal.pdf

55. Kamal, S. A., M. Sarwar & U. A. Razzaq (2013a, September 4, 5). Anthromathematics of the human spinal column (ruling out scoliosis-like conditions). The First Conference on Anthromathematics in the Memory of Syed Firdous (ANTHROMATHEMATICS 2013), Department of Mathematics, University of Karachi, Karachi, Pakistan and Government College, Hyderabad, Pakistan, p. 7 (Prof. Dr. Z. K. Kazi and Prof. Dr. M. A. Shah memorial lecture), abstract#Anthro13-01:
https://www.ngds-ku.org/Presentations/Scoliosis.pdf

https://www.ngds-ku.org/Papers/J29.pdf

58. Kamal, S. A., N. Saeed, M. S. Saleem et al. (2011b, December 21, 22). Anthromathematics of MUAC. The International Conference on Physics and the World of Today in the Memory of Prof. Dr. Sheikh Ansar Husain, Department of Physics, University of Karachi, Karachi, Pakistan, p. 66 (invited lecture), abstract#45:
https://www.ngds-ku.org/Presentations/Physics3-2.pdf

https://www.ngds-ku.org/Papers/J35.pdf

61. Kamal, S. A. & S. A. Husain (1978, November 6-8). Cross lattice and eigenfunctions. All Pakistan Mathematical Conference, the NED University of Engineering and Technology, Karachi, Pakistan, p. 4, abstract:
https://www.ngds-ku.org/Presentations/Cross.pdf

https://www.ngds-ku.org/Papers/J07.pdf

 https://www.ngds-ku.org/Presentations/Anthropometry.pdf

(Submitted: April 2016; Accepted for Publication: May 2016)
EDITORIAL POLICY
Send your manuscript as attachment by e-mail on MSWORD along with a hard copy on the following address. Manuscripts should be typewritten and double spaced (including references). The original manuscript will be returned to the author if not accepted for publication, during peer review.

The review of the manuscript will be blind and impartial. Authors therefore are requested to include with each copy of the manuscript a cover sheet which contains the title, author's name institutional affiliation and the date the manuscript is submitted. The manuscript itself should contain its title but NO 'I' the author's name. The author should make every effort to avoid the inclusion of clues to his or her identity in the manuscript.

Style: The content, organization and style of manuscripts should follow the Publication Manual of the American Psychological Association (Fifth edition, 2006). A manuscript written in an obviously deviating style will be returned to the author for revision.

Abstracts: All articles will be preceded by an abstract of 100-200 words. Contributors are referred to the Publication Manual of the American Psychological Association for assistance in preparing the abstract.