Allelopathic potential of Chenopodium album L.: effects of aqueous extract on germination and radicle growth of wheat and maize
Iram-us Salam, S. Shahid Shaukat and Moinuddin Ahmed

Antioxidant potential and skin irritancy of Moringa oleifera Lamk.
Muhammad Usman, Saifdor Ali and Zaheer-ud-din Khan

Multidrug resistance in Pseudomonas aeruginosa isolated from different sources
Sumaira Kiran and Sabahat Saeed

Pharmacognostic evaluation of the leaves of Suaeda acuminata (C.A. Meyer) Moquin Tondon (Chenopodiaceae)
Uzma Munir, Anjum Perveen and Syeda Qamarunnisa

Fatty acid profile of neogastropod species Babylonia spirata from Manora channel the intensive shipping area of Pakistan
Nuzhat Afsar, Ghazala Siddiqui, Zarrien Ayub and Habib Fatima

Effects of the different concentrations of sugar and pectin on selected physicochemical properties and sensory evaluation of drinking yoghurt during cold storage
Maryam Yekta-Fakhr, VajihehFadaei and Mahnaz Hashemiravan

Growth of Vachelia nilotica subsp. indica (Benth.) Kyal & Boatwr. (Mimosaceae) seedlings in relation to Sea salt stress and changes in biochemical and ionic composition of leaves
D. Khan and Zulfiqar Ali Sahito

Germination indices of egg plant (Solanum melongena L.) under sea salt salinity
Rafat Saeed, Rafiq Ahmad, Ameer Ahmed Mirbahaar and Bushreen Jehan

Physiological performance of two Korean rice cultivars under saline environment at seedling stage
Huda Shahid, Jung-Il Cho, Soo-Chul Park, Tae-Hun Ryu, Sung-Han Park and Zamin Shaheed Siddiqui

Effect of salinity stress on some hematological parameters of Tilapia mossambicus (Peters, 1852)
Abdul Rauf and Naeemuddin Arain

Ethnobotanical studies of herbs of Agra valley Parachinar, Upper Kurram agency, Pakistan
Muhammad Ajaib, Syed Khalil Haider, Annam Zikrea and Muhammad Faheem Siddiqui

New record species of Pholiota (Fr.) from Pakistan
Abdul Razaq, Saleem Shahzad and Ali Noor

New record species of Tricholomataceae from Pakistan
Abdul Razaq, Saleem Shahzad and Ali Noor

A study of the sound producing organs of Sciobia sp. (Orthoptera: Gryllidae)
Nasreen Khan and Imtiaz Ahmad

Occurrence of sawfish (family: Pristidae) in Pakistan
Muhammad Moazzam and Hamid Badar Osmany

Cont’d...
Effect of different bio-inoculants on growth and yield of potato cv. “desiree”
Muhammad Ali Khan, M. M. Mahmood, Sudheer Tariq, Muhammad Ashraf, S. Riaz and Aasia Ramzan

Quality assessment of tetra pack milk and tea whiteners in relation to strength of macrominerals and microbial activity.
Rubina Perween, Qamar-Ul-Haque, Anila Anwar, Kousar Yasmeen, Hina Zafar, Humera Anwar and Talat Tarique

Crop residue and Phosphorus management for sustained crop production under direct dry seeded rice cultivation system in KPK, Pakistan
Abdul Wahab Khan, Abdul Majid, Rauf Ahmad, M. Yousuf, Sanaullah Jalil and Niaz Ali

Effect of foliar application of L-methionine on photosynthetic, biochemical and growth attributes of wheat at two levels of nitrogen
Zulfiqar Ahmad, Shermeen Tahir, M. Abid, Tariq M. Qureshi, Aron Solomon and Abdul Rehman

Evaluation of tomato (*Lycopersicon esculentum* Mill.) genotypes for yield attributes
Muhammad Farooq, Hidayat-Ullah, Taj Naseeb Khan and Aasia Ramzan

Bio-ecology of marsh crocodile (*Crocodylus palustris*) in captivity at Karachi Zoo
Muhammad Mansoor Qazi and Sohail Barkati

Nitrogen effect on fruit setting in cotton under moisture stress
Mahmood-ul Hassan, M. Maqsood, M. Saleem, S. Aftab Wajid and S. Sarwar Alam

Efficacy of *Carica papaya* and *Aloe barbadensis* leaf extracts against mustard aphids (*Lipaphis erysimi* Kalt.)
Rashida F. Baroacha, Aziz Ahmed Ujjan, Muhammad Ali Khanzada, Asad Manzur and Saleem Shahzad

Stunting induced by wasting—wasting induced by stunting: A case study
Syed Arif Kamal, Samira Sahar Jamil and Urooj A. Razzaq

Biometrical association of plant height and yield components in *Gossypium hirsutum* L.
A. Rehman, Mariam Raziq, Ameer A. Mirbahaar and Saifullah Abro

Effect of biopesticides against jassid *Amrasca devastans* (Dist), and White Fly *Bemisia tabaci* (Genn.) on okra
Khalid Mahmood, Saleem Ejaz, Moazzam Ali Khan, S. Shahid Shaukat and Aamir Alamgir

Floristics, leaf size and life form spectra of Asshab baba graveyard Chaghari Matti, district Peshawar Khyber Pakhtoonkhwah
Muhammad Aaql Khan, Asad Ullah, Abdur Rashid, Syed Mukaram Shah And Shehzad Fida

Checklist of spiders (order Araneae: class Arachnida) from the Campus of University of Karachi, Sindh, Pakistan
M. Kazim, Rukhsana Perveen and Abid Raza
STUNTING INDUCED BY WASTING — WASTING INDUCED BY STUNTING: A CASE STUDY

Syed Arif Kamal1,3*, Samira Sahar Jamil2# and Urooj A. Razzaq2

1Anthromathematics Group, Department of Mathematics, University of Karachi, Karachi 75270, Pakistan; 2SF Growth-and-Imaging Laboratory, the NGDS Pilot Project, University of Karachi, Karachi 75270, Pakistan; 3Subject Committee for Physical Education, Health and Sport Sciences, National Testing Service, Islamabad, Pakistan; 1 e-mail: profdrakamal@gmail.com

ABSTRACT

Background: Stunting and wasting are accepted, widely, as health-risk indicators of individuals at micro level, and that of population at macro level. These two conditions, when present together in a child, are the early-warning signals in the context of health-and-nutrition status. However, link between stunting and wasting has been rarely studied.

Case Presentation: Association between the two conditions was observed in 2 sisters (Q. J. and J. J.), who were registered in SF Laboratory’s growth-monitoring program. They were part of a family, consisting of father, mother, 3 daughters and a son. This family was monitored for a period of 4 years (2007-2011), through anthropometric measurements of all 4 siblings. Height- and mass-data analysis indicated that wasting, present for a longer period, in the elder sister (Q. J.) may be the cause of a marked drop in height, while the anthropometric-data analysis of the younger one, J. J., gave some evidence in favor of wasting being induced by stunting.

Mathematical Model: Mathematical-statistical model, given by Kamal, Firdous and Alam in 2004, was modified to study the cases presented. Concepts of growth (height) velocity and mass (weight) gain (loss) were abandoned and replaced by trajectories as well as height and mass percentiles. A jumping up (down) on these trajectories represented ‘true-gain (-loss)’. For ‘true-loss’ dropping down on percentile curve should be associated with loss of height (mass). A gain in height (mass) over a certain period, accompanied by a drop in percentile during the same period was interpreted as ‘pseudo-gain’.

Conclusion: This family’s data highlighted stunting, induced by wasting and wasting, induced by stunting. Besides investigating association between stunting and wasting, we, also, tried to find out the underlying mechanisms and discover the agents causing the two conditions. Longitudinal studies should focus on physiological and psychological bases of the potential relations of childhood stunting and wasting, starting from conception and following children till old age, in particular, looking for prevalence of stunting (with associated wasting) in a community and vice versa.

Keywords: Children, energy channelization, optimal-mass management, stunting, wasting, obesity, over-nutrition, under-nutrition, lifestyle adjustment, diet plan, real-gain, pseudo-gain

LIST OF ABBREVIATIONS

BMI: Body-Mass Index
NGDS: National Growth and Developmental Standards for the Pakistani Children
SF: Syed Firdous
SGPP: Sibling Growth Pilot Project — a subproject of the NGDS Pilot Project

BACKGROUND

Stunting and wasting are 2 major problems facing the child population in developing countries and is a matter of most field studies. A recent study by Murage et al. (2010) investigated prevalence of stunting, overweight and obesity, and metabolic disease risk in rural South African children. However, links between stunting and wasting have been studied by only a few (Ferreira et al., 2008; Maiti et al., 2012; Martorell and Young, 2012; Richard et al., 2012; Stevens et al., 2012).

For children, who are stunted and wasted, under-nutrition and/or chronic diseases might be the main concerns, requiring complete head-to-toe examination. Over-nutrition might cause tallness plus obesity, which amplifies tissue -synthesis rate and storage in body. The remaining two possibilities, stunting with obesity and tallness with wasting, might arise due to energy-channelization problem in body, i. e., a large amount of micronutrients, all flowing through one channel of absorption. Stunting with obesity may be caused by storage of most micronutrients; whereas

*The italic superscripts a, b, c, appearing in the text, represent endnotes listed before references.

#PhD (Neuroscience); MA, Johns Hopkins, Baltimore, MD, United States; MS, Indiana, Bloomington, IN, United States; Founding Project Director, the NGDS Pilot Project • paper mail: Professor and Chairman, Department of Mathematics, University of Karachi, PO Box 8423, Karachi 75270, Sindh, Pakistan • tel: +92 21 9926 1300-15 ext. 2293 • home-page: https://www.ngds-ku.org/kamal • ORCID: 000-0002-1711-4827 • the NGDS Pilot Project URL: https://ngds-ku.org

#MPhil Candidate (Mathematics), Research Center for Mathematical Sciences, Federal Urdu University of Arts Sciences and Technologies (FUUAST), Gulshan-e-Iqbal Campus, Karachi 75330

153, 2014

Fig. 1. Nutrition and energy-channelization: their effects on statuses of height and mass — stunting and wasting, when exist together in a child, may suggest under-nutrition, while if stunting occurs with obesity, there might be some hormonal problems, e.g., growth-hormone deficiency, which is hindering growth, and most of the nutrients taken in might be utilized in weight gain. Obesity occurring with tallness might be a case of simple obesity due to over-eating. Tallness along with wasting suggests that most of the dietary nutrients are exhausted in the process of height gain.

CASE PRESENTATION

Data Collection

The NGDS Pilot Project was initiated in 1998 under directives of Governor Sindh/Chancellor, University of Karachi. It was designed after considering North American and European, ethical and human-right standards (Kamal et al. 2004). SF Growth-and-Imaging Laboratory provides services to the community in the field of family-health care — families with children, having growth-related problems, register with our growth-monitoring program, officially recognized as SGPP (Sibling Growth Pilot Project). SGPP is a subproject of the NGDS Pilot Project. Families can benefit from this program by filling out and signing ‘SGPP Participation Form’. Some children have presented with unusually short stature, at the same time dropping well below their optimal mass (weight), with the passage of time. On the other hand, a few children were severely wasted, when they were first checked, and with the passage of time they, also, became stunted. Additional File 1 consists of detailed project protocols.

Heights and masses were measured to accuracies of 0.1 cm and 0.1 kg, respectively, with the children undressed to short underpants, all clothing above the waist removed (Kamal, 2006). The equipments were calibrated at the beginning of every session. Mid-upper-arm circumferences (MUAC) were measured to accuracies of 0.1 cm, on both right and left arms. Father’s (Mother’s) mass was ‘gross mass’, converted to ‘estimated-net mass’ (mass with...
no clothing on) by applying a suitable clothing correction. Children wore only briefs or panties and, hence, their masses were used in calculations without any clothing correction. The children were measured with due regard to privacy, confidentiality and comfort of the participants (Kamal, 2006). Parents were given the opportunity to discuss their children’s growth-and-obesity profiles with the Project Director.

A mathematical-statistical model was developed to study the case of J. Family. Detailed model is described in Additional File 1. Here, we give the salient features. According to Kamal et al. (2004), height and mass graphs were assumed to be linear, for measurements performed in a short span of time — a good approximation for most regions. Heights at different age-grids were computed using linear interpolation. Child’s target height (in cm) was computed by adding (subtracting) 6.5 cm to (from) average height (cm) of biological parents (Tanner et al., 1970). The Pakistani growth charts were not available at the time of examinations. The best estimate was target height, which was extrapolated backwards to compute current-age-mid-parental height. A positive (negative) difference of current-age-mid-parental and interpolated-actual heights, at the same age indicated whether the child was ‘stunted (tall)’. Body-mass index (BMI) was computed by taking ratio of mass (in kg) to square of height (in meter). However, the definition and perception of obese (wasted), based on BMI scale, is not applicable for children, in which case BMI tables must be used (Kamal et al., 2013c). Kamal and Jamil (2012) introduced estimated-adult BMI, ratio of estimated-adult mass to square of estimated-adult height. This parameter could, roughly, predict obesity status in adulthood without using children’s BMI tables. For a better estimate, optimal mass (Kamal et al., 2011b; 2013c) was determined and compared with actual mass. A positive (negative) difference of actual and optimal masses indicated that the child was ‘obese (wasted)’.

This model has been slightly modified for the purpose of computing growth-and-obesity profiles of children over a period of time. Growth (Height) velocity and mass (weight) gain (loss) concepts were abandoned. Height and mass percentiles did the job, just like the altitudes at which aircrafts are flying. At times, we noticed a numerical gain of height or mass over a certain period of time. However, if the respective percentile dropped during the same period, it was not a ‘real-gain’, but a ‘pseudo-gain’. A jumping up (down) on percentile trajectories represented a real- gain (-loss). For height or mass extreme values (below 3rd or above 97th percentile), logistic regression/linear interpolation was used to compute numerical values. KJK (Kamal-Jamil-Khan) model (Kamal et al., 2011b), employing ‘growth tables’ (Kamal and Jamil, 2012) obtained from ‘growth charts’, released by Centers for Disease Control and Prevention, was used to compute single-checkup-growth profile. Although, these growth charts are meant for assessment of US population, they are being used in other countries, too.

Here, we illustrate the phenomena of ‘stunting induced by wasting’ and ‘wasting induced by stunting’ through an example, in which this kind of association between these two conditions was observed. The family, consisting of biological parents, 3 girls (Z. J., Q. J. and J. J.) and a boy (T. J.) reported for first checkup in May 2007, with follow-ups in September/October 2007, June 2008 and February 2009 (Figure 2). A final checkup was conducted in March 2011 for evaluation of efficiency and effectiveness of intervention strategies. History provided by mother indicated obesity problem in Z. J., severe wasting and marked behavior change in Q. J., severe stunting and hyperactivity in J. J., hyperactivity and stubbornness in T. J. During the checkups parents showed enthusiasm in learning about medical equipment and complied with all the instructions given to them.

Q. J. failed to gain height and mass (weight). Her mass percentile dropped, constantly, during successive checkups, falling below 3rd percentile after 2nd checkup. Q. J.’s examination showed white spots on nails and back asymmetry on forward bending and visual inspection. J. J., also, failed to pick up height and mass (both below 3rd percentile at the age of 8.0 years). Examination revealed unkempt, hyperactive, talkative child with yellow teeth and MUAC (mid-upper-arm circumferences) different on right (16.1 cm) and left (16.5 cm) arms.

Results

Both parents have short height (target height lies at, approximately, 9th percentile — 8.81, to be exact, for girls and 9.43 for boys) and are obese — father 38.97% obese (first

Fig. 2a, b. Measurements of height and mass of J. J. — photographs taken on February 08, 2009; age: 8 years 1 month 14 days
Fig. 3a, b. Height and mass percentiles of two sisters, Q. J. and J. J. show that Q. J. was a wasted child and remained wasted throughout the follow-ups. But initially (1st checkup) the difference between her height and mass percentiles was not significant, later (2nd checkup) a notable drop in mass percentile was noted, with a slight increase in height percentile. 3rd checkup of this child showed a marked drop in percentile of height, which we interpret as being caused due to persistence of wasting. On the other hand, J. J. was obese and stunted child. She remained stunted throughout her checkups but her mass percentile dropped significantly after 2nd checkup. We infer from this that drop in percentile of mass is due to being stunted.

checkup) and 35.97% obese (final checkup); mother 15.50% obese (first checkup) and 15.91% obese (final checkup). Q. J.’s height percentile, according to Figure 3, shows a slight increase, reaches a maximum and then takes a downward turn, as indicated by percentile values, 4.77, 5.10 and 3.84 at 10.0 years (between 1st and 2nd checkup), 10.5 years (between 2nd and 3rd checkup) and 11.0 years (between 3rd and 4th checkup), respectively; whereas mass percentile shows a constant decrease, as shown by percentile values, 4.37, 1.78, 1.66 at 10.0 years, 10.5 years and 11.0 years, respectively. Non-integral values of percentiles are obtained by linear interpolation. These may be termed as interpolated percentiles. As illustrated in Figure 4, the elder sister, Q. J. remained stunted (1.90% between 1st and 2nd checkup, 1.41% between 2nd and 3rd checkup, 2.27% between 3rd and 4th checkup) as well as wasted.

Fig. 4a, b._statuses (pertaining-to-height and -mass) of Q. J. and J. J. — besides demonstrating stunting induced by wasting and wasting induced by stunting, statuses (pertaining-to-height and -mass) of the two sisters, Q. J. and J. J., bring out another very interesting phenomenon. Status (pertaining-to-mass) of Q. J. is a mirror reflection of status of J. J. There is a hypothesis that J. J. would, probably, follow the curve of Q. J., because she belongs to the same family-genetic code. Discovery of such hidden curves should be the focus of future mixed-longitudinal-sibling studies. Status (pertaining-to-height) is, almost, flat, suggesting a uniform gain of height. The apparent variations may be due to different rates of growth in summer and winter as well as measurement errors.
(0.82% between 1st and 2nd checkup, 5.53% between 2nd and 3rd checkup, 4.76% between 3rd and 4th checkup) throughout this period.

On the other hand, J. J.’s height percentile, according to Figure 3, shows a constant decrease, as indicated by percentile values, interpolated for 6.5, 7.0, 8.0 years, which are 2.74, 2.61 and 1.97, respectively; whereas mass percentile reaches a maximum and then drops down, as shown by percentile values, 5.80, 6.04, 2.48 at 6.5 years, 7.0 years and 8.0 years, respectively. J. J. remained stunted (3.08% between 1st and 2nd checkup, 3.10% between 2nd and 3rd checkup, 4.16% between 3rd and 4th checkup) as well as obese (6.14% between 1st and 2nd checkup, 10.06% between 2nd and 3rd checkup, 0.65% between 3rd and 4th checkup) throughout this period, as illustrated in Figure 4.

We, briefly, describe growth-and-obesity profiles of other 2 siblings. Z. J., the eldest sister, constantly, climbed up on the height trajectory. She was, however, dropping down on mass trajectory, thus reducing her obesity level. The youngest of the family, T. J. dropped his height per centile, slightly, from 2nd to 3rd checkup and, then picked up. He was, however, diving down on mass trajectory, thus taking him from optimal-mass management to becoming wasted. Additional File 2 has detailed case documentation.

CONCLUSION AND FUTURE DIRECTIONS

This family’s data brought out a very interesting phenomenon, stunting, induced by wasting (case of Q. J.) and wasting, induced by stunting (case of J. J.). The authors suggest a need to study physiological and psychological (Walker et al., 2007) bases of the potential relations and mechanisms of childhood stunting and wasting through comprehensive longitudinal studies, following stunted and wasted children, beginning right from infantile period (Lawlor et al., 2007) or even before (Han et al., 2011) and continuing through childhood, puberty, adolescence (Walker et al., 2007), adulthood and old age. A good starting point could be the study of prevalence of stunting (Onis et al., 2000) in a community, and finding out wasting present in stunted children. A similar study could be focused on determining prevalence of wasting, and then discovering stunting in wasted children.

This family presented another noticeable phenomenon, which has been hinted by other researchers, also (Caballero, 2005) — underweight and obesity going hand-in-hand in the same family. While Z. J. had marked obesity as the major problem, Q. J. showed severe wasting. J. J. was referred to our laboratory for failure to gain height — stunting was confirmed upon examination.

The method presented in this work is robust and could be used to predict heights and masses 6-month ahead and, therefore, could form the basis of a comprehensive plan for target-height achievement (target height is defined by Tanner and is based on adult-mid-parental height) (Kamal et al., 2013b) as well as optimal-mass management (Kamal et al., 2013c) in children and adolescents by reducing under- (Subramanyam et al., 2011) and over-nutrition. Optimal-mass management is the optimal solution among three factors (Figure 5) — diet plan, exercise plan and, more importantly, life-style adjustment (Kamal et al., 2011a). Life-style with a positive mindset (freedom from depression), an effective social interaction (family, friends, workmates), a balanced daily routine (appropriate screen time, walking, light exercise), may contribute towards achieving this goal (Kamal et al., 2013c). It is to be noted that all diet-based interventions for height and mass management are ineffective if the child is suffering from vitamin-D deficiency (Kamal et al., 2013a).

ACKNOWLEDGEMENTS

The first author is indebted to Prof. Dr. Duré-Samin Akram, Diplomat, American Boards in Pediatrics and Ex-President, Pakistan Pediatric Association, who, thoroughly, examined Q. J. and J. J. and gave her clinical input to plan a course of intervention. SSJ would like to express her gratitude for her mother, Mrs. Syeda Abida Jamil. Without her
domestic support, the author would not be able devote herself, fully, to this project. Last but not the least, her husband, Mr. Musheer Ahmed deserves greatest appreciation for sharing, caring and providing encouragement during the toughest of times. The authors express their heartfelt thanks for the children and their parents for giving written permission to use their data and photographs, which appear in this paper and the additional files. This work was supported by Research Grant awarded by Dean, Faculty of Science, Grant No. DFSR/2009, which is, gratefully, acknowledged. The authors declare that they don’t have any financial/non-financial competing interests in the research presented here.

ENDNOTES

aThe drop in percentile of height and physical gain of weight, as a child approaches puberty, is an illustration of energy-channelization problem.

bThe NGDS Pilot Project https://ngds-ku.org is a community-based project dealing with child growth and optimal-weight management of families since 1998, based on Opt-in Policy. The Informed Consent Form is uploaded at: https://www.ngds-ku.org/ngds_folder/Protocols/NGDS_form.pdf

cThe SGPP Participation Form http://www.ngds-ku.org/SGPP/SGPP_form.pdf explained SGPP protocols and provided links to reading material and procedure-photographs.

dThe concept of optimal mass (weight) was, formally, introduced by the first author in 2011 as the mass (weight), whose percentile matches with the percentile of current height (Kamal et al., 2011b).

Additional File 1 https://www.ngds-ku.org/Papers/J32/Additional_File_1.pdf consists of detailed project protocols, laboratory techniques and mathematical-statistical model (introduced ‘Growth-and-Obesity Moving-Profiles’), which was developed for data analysis.

Family labels and children’s initials presented in this manuscript and supplementary documents do not correspond to first letters in actual names (as per confidentiality standards established by our group). Same is true about case numbers appearing in the main and the additional documents.

eThe calculations presented in this work are based on growth charts released by Centers for Disease Control and Prevention, Atlanta, Georgia, United States https://www.cdc.gov

fAdditional File 2 https://www.ngds-ku.org/Papers/J32/Additional_File_2.pdf consists of detailed case documentation (additional figures, formulae, description of the model used, and tables listing growth-and-obesity profiles of all family members, in easy-to-understand language).

REFERENCES

(Accepted for Publication: December 2013)

Website of this document (on first author's homepage): https://www.ngds-ku.org/Papers/J32.pdf

Abstract: https://www.ngds-ku.org/pub/jourabstB.htm#J32