INTERNATIONAL JOURNAL OF BIOLOGY AND BIOTECHNOLOGY

Vol. 8, No.1.

<table>
<thead>
<tr>
<th>Contents</th>
<th>January, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic importance of tumor markers, Neuron Specific Enolase (NSE), Carcino-Embryonic Antigen (CEA) and Cancer Antigen 15-3 (CA 15-3), in serum and pleural effusions of patients with malignant pulmonary diseases</td>
<td>71</td>
</tr>
<tr>
<td>Junaid Mahmood Alam, Syed I Atif, Ishrat Sultana and Maqsood Ali Ansari.</td>
<td></td>
</tr>
<tr>
<td>Prevalence of hepatitis B virus among apparently healthy blood donors and among patients of Molecular Biology Laboratory of Kiran Hospital, Karachi</td>
<td>79</td>
</tr>
<tr>
<td>Muhammad Hanif, Parveen Zaidi, Laeeq Ahmed and Nazia Ahmed</td>
<td></td>
</tr>
<tr>
<td>Growth-and-obesity profiles of children of Karachi using box-interpolation method</td>
<td>87</td>
</tr>
<tr>
<td>Syed Arif Kamal, Nida Jamil and Shahid Ali Khan</td>
<td></td>
</tr>
<tr>
<td>AGRONOMY</td>
<td>97</td>
</tr>
<tr>
<td>Allelopathic effect of Brassica and barley extracts on weed suppression and grain yield of wheat</td>
<td></td>
</tr>
<tr>
<td>Yasar Habib, Muhammad Saleem, Syed Haider Abbas, Maqsood Qamar and A. Wahab Khan</td>
<td></td>
</tr>
<tr>
<td>Effects of Eucalyptus camaldulensis Dehn. aqueous leaf litter extract on the growth of green gram (Vigna radiata L.) Wilczek</td>
<td>103</td>
</tr>
<tr>
<td>Saima Ibrahim</td>
<td></td>
</tr>
<tr>
<td>Bio-control and allelopathic effects of Eucalyptus camaldulensis Dehn. leaf litter on the growth of green gram (Vigna radiata L.) Wilczek with farmyard manure</td>
<td>107</td>
</tr>
<tr>
<td>Saima Ibrahim</td>
<td></td>
</tr>
<tr>
<td>Optimization of nitrogenous fertilizer requirement in cotton crop to enhance the seed-cotton yield by using chlorophyll meter</td>
<td>115</td>
</tr>
<tr>
<td>Muhammad Naem Akhtar, Shabab ud-din, Ghulam Abbas, Hammad Hussnain, Ijaz Ahmad and Mehwish Shabab</td>
<td></td>
</tr>
<tr>
<td>Effect of boron and gibberellic acid on growth and fruit yield of olive cv. “uslu”</td>
<td>123</td>
</tr>
<tr>
<td>Mukhtar Ahmad, Muhammad Ali Khan, Hafeez-ur-Rahman, Niaz Ahmad, Sudheer Tario and Aasia Ramzan</td>
<td></td>
</tr>
<tr>
<td>PATHOLOGY</td>
<td>127</td>
</tr>
<tr>
<td>Resistance prevalence in community acquired urinary pathogens against sulfisoxazole and trimethoprim-sulfamethoxazol</td>
<td></td>
</tr>
<tr>
<td>Sabahat Saeed and Perween Tariq</td>
<td></td>
</tr>
<tr>
<td>Comparative evaluation of local BT and Non BT cotton against exotic BT varieties, for cotton leaf curl virus disease</td>
<td>131</td>
</tr>
<tr>
<td>Inam-Ul-Haq, Mumtaz Hussain, Noor-Ul-Islam and S. Sarwar Alam</td>
<td></td>
</tr>
<tr>
<td>Evaluation of (Diverse) cotton genotypes for reaction to cotton leaf curl virus disease and yield Performance under different ecological zones</td>
<td>135</td>
</tr>
<tr>
<td>Inam-ul-Haq, Mumtaz Hussain, Noor-ul-Islam, S. Sarwar Alam and Muhammad Aşlan</td>
<td></td>
</tr>
</tbody>
</table>

Cont’d....
GROWTH-AND-OBESITY PROFILES OF CHILDREN OF KARACHI USING BOX-INTERPOLATION METHOD

Syed Arif Kamal1 *, Nida Jamil2 and S. A. Khan1 #

1SF Growth and-Imaging Laboratory, Department of Mathematics, University of Karachi, Pakistan; 2Department of Mathematics, Jinnah University for Women, Karachi, Pakistan; 1 e-mail: profdrakamal@gmail.com

ABSTRACT

This paper introduces quantifiable growth-and-obesity profiles of children in family-centered care. This work presents a model based on the mathematical-statistical technique of ‘box interpolation’, which generates patient- and parent-friendly profiles based on one set of height and weight measurements of parents and children. Adult-mid-parental (Target) heights and optimal weights were compared with measured heights and weights to determine if the children were obese (wasted) and tall (stunted), associating a numerical index with each condition, in the form of percentage. This model, also, estimated adult-heights and weights of children and indicated whether parents were obese (wasted). Data were collected by authors, following standard protocols developed by our team, as part of the NGDS (National Growth and Developmental Standards) Pilot Project. This project was approved by ‘Institutional Review Board’. Informed consents were obtained from parents of participating families. Each child was weighed and measured, in the presence of father and mother, barefoot, wearing short underpants, stripped to waist. Data from 70 participants of different localities of Karachi (17 families, consisting of 17 fathers, 17 mothers, 16 boys, 20 girls) were analyzed. Boys showed a greater risk of obesity (46.15%) as compared to girls (17.65%), when both parents were obese (15 families). Excessive obesity (wasting), failure-to-grow, short children developing normally, and failure-to-thrive, children neither growing nor developing normally, may be the cause of an underlying physical or psychological problem needing a head-to-toe evaluation. The method reported in this paper may be helpful in identifying such cases in children 3-10-year old, if regular height and weight screenings are conducted.

Keywords: Box interpolation, children, growth modeling, anthropometry, optimal weight, adult-mid-parental height

INTRODUCTION

Children are assets of any nation. The future of a country depends on strong and healthy children (Shen et al., 1996). Parents, teachers and counselors are interested in knowing growth profile of children to plan better their exercise and diet programs. In particular, parents are keen to find out how their children are doing in terms of height and weight. They are, also, eager to learn what is going to be final height and final weight of their sons or daughters (Karlberg, 1996; Joss et al., 1983; Hintz et al., 1999; Rosenfeld 2003).

Obesity is becoming a problem worldwide among children and adolescents (Whittaker et al., 1997; Ebbeling et al., 2002). The incidence of childhood obesity has increased by more than 50 percent in the last decade (Siedentop, 2003), mainly because of a lack of physical activity (Christodoulos, 2006). It is related to a number of complications in adulthood (Reilly et al., 2003). There is a conscious that the earlier the problem is detected, the more efficient and effective are the intervention strategies (Ludwig, 2007). However, in the absence of an objective, quantifiable criterion to determine severity of obesity, it becomes difficult to identify at risk cases and, hence, control the situation. The problem is compounded by a lack of awareness among the communities, absence of standardized equipments and standard operating procedures, inadequate training of the anthropometrists (sometimes non-professionals collect the data) and improper handing of data (researchers not trained in the statistical techniques).

We have investigated the prevalence of obesity in children, when both parents are obese, based on a growth-and-obesity profile, after developing a mathematical model and standardized protocols.

MODELS OF GROWTH

Correlation Model

Argyle et al. (2008) modeled and fitted the serial correlation structure of growth measurements of children. By this process, they achieved the benefit that monitoring growth at specific ages did not remain crucial, statistically.

ICP Model

The ICP (infancy-childhood-puberty) model is a time series, representing height of child (on y axis) as a function of age (on x axis) (Karlberg, 1987; 1996). Zero time is the moment of birth and zero height corresponds to conception, x intercept representing term of baby and y intercept birth length. During the phase transitions, infancy-
to-childhood phase and childhood-to-puberty phase, the growth curve (height) is continuous, but not smooth. Therefore, height velocity is not defined during phase transitions.

KFA Model

The growth model developed by our group (Kamal et al., 2004), referred to as KFA (Kamal-Firdous-Alam) model, assumed that the growth curves (height and mass graphs) were linear if the measurements were performed 6-month apart — a good approximation for most of the regions, except where there was a rapid change (during phase transitions; height velocity undefined) of growth rate. Other than these transition regions, height at some age grid, say, 6.0 or 6.5 years, was computed using linear interpolation. Boys’ (B) and girls’ (G) target (adult-mid-parental) heights (taken as reference), were computed using the biological father’s (F) and the biological mother’s (M) measured heights, respectively (Karlbberg, 1996; Tanner et al., 1970; Chianese, 2005).

$$\begin{align*}
B &= \frac{F + M + 13}{2} ; \quad G = \frac{F + M - 13}{2} \\
\end{align*}$$

All heights were in centimeters (cm) and masses in kilograms (kg). Multiplying mass by a factor of 2.205 would generate weight in pounds (lb). These computed heights were extrapolated backwards to compute desired height at the reference-age grid. This was compared with the interpolated-actual height at the same age to determine whether the child was stunted (short-for-age) or tall. Body-mass index was computed by taking the ratio of mass (in kg) to square of height (in meters) and compared with the reference value to determine obesity profile. In addition, optimum mass for given height was determined and compared with the actual mass to find out whether the child was obese or wasted (lesser-mass-for-height). The model had provisions to compute height velocities and rates of gain/loss of weight, in order to predict height and weight during the next 6 months.

The KFA model required 2 sets of measurements separated by 6 months to generate a complete profile. While helpful for pediatricians, the time frame required in generating the first set of results (six and a half months after the original checkup) may put a severely wasted child at a great health risk.

METHODS

Project Protocols

The NGDS (National Growth and Developmental Standards for the Pakistani Children) Pilot Project Protocols were designed after taking into account of prevailing North American as well as European ethical and human-right standards (Kamal et al., 2002) — ‘Informed Consent Form’ may be viewed at: http://www.ngds-ku.org/ngds_folder/Protocols/NGDS_Form.pdf

The project was initiated after ‘Institutional Review Process’ by University of Karachi authorities, which included committees of Chancellor (Governor Sindh) and Vice Chancellor. SGPP (Sibling Growth Pilot Project) is a subproject of the NGDS Pilot Project, in which preteen children, father and mother of a given family are weighed and measured at SF-Growth-and-Imaging Laboratory. Informed consent was obtained by requiring both parents to sign ‘SGPP Participation Form’ http://www.ngds-ku.org/SGPP/SGPP_Form.pdf that included address of web-site (http://ngds.uok.edu.pk) and contained detailed information and photographs of procedures. The families were given detailed written and verbal instructions to prepare children for the checkups and maintain standardization of procedures. Upon arrival, the families were briefed on procedures and their questions answered. All measurements were carried out in the morning hours (children are, generally, taller in the morning as compared to bedtime), with the children completely undressed except for briefs or panties, in the presence of father and mother. Acoustic, visual and data privacy of the participants was maintained. Parents were given the opportunity to discuss growth-and-obesity profile with the Project Director.

Laboratory Techniques

Heights, h, and masses, μ, were measured according to protocols developed by the NGDS Team (Kamal, 2006). These are, briefly, described here. For measurement of stature, the children were aligned to the mounted measuring tape and instructed to keep hands straight and open, palms touching thighs, holding breath. A pencil was held at eye level so that head is straight. Heights were recorded to nearest 0.1 cm by placing setsquares on the mounted engineering tape. Masses were recorded to nearest 0.1 kg, using a standard beam scale. Children were asked to step on the scale with empty hands, (anatomical position) holding breath, standing in the center and looking straight. At the start of each measurement session, a standard 100-cm ruler and a standard 2-kg mass were used to calibrate the height-measurement system and the beam scale, respectively (Kamal, 2009).
Table 1. Parents’ Obesity Profiles

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Father</th>
<th>Mother</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Birth (YYYY-MM-DD)</td>
<td>1970-01-13</td>
<td>1973-11-04</td>
</tr>
<tr>
<td>Date of Checkup (YYYY-MM-DD)</td>
<td>2009-02-05</td>
<td>2009-02-05</td>
</tr>
<tr>
<td>Age (years)</td>
<td>39.06</td>
<td>35.25</td>
</tr>
<tr>
<td>Height, h (cm)</td>
<td>169.3</td>
<td>154.9</td>
</tr>
<tr>
<td>Height (ft-in)</td>
<td>5 ft 6.65 in</td>
<td>5 ft 0.98 in</td>
</tr>
<tr>
<td>Percentile-of-Height, P(h) ⇔</td>
<td>16.00^{p}</td>
<td>10.53^{p}</td>
</tr>
<tr>
<td>Gross Mass (kg)</td>
<td>71.4</td>
<td>50.7</td>
</tr>
<tr>
<td>Clothing Correction (kg)</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Net Mass, μ (kg) ⇒</td>
<td>71.0</td>
<td>50.2</td>
</tr>
<tr>
<td>Net Weight (lb-oz)</td>
<td>156 lb 8.88 oz</td>
<td>110 lb 11.06 oz</td>
</tr>
<tr>
<td>Percentile-of-Mass, P(μ) ⇔</td>
<td>51.47^{p}</td>
<td>17.31^{p}</td>
</tr>
<tr>
<td>Optimal Mass (kg) ⇒</td>
<td>60.25</td>
<td>48.39^{*}</td>
</tr>
<tr>
<td>Optimal Weight (lb-oz)</td>
<td>132 lb 13.62 oz</td>
<td>106 lb 11.20 oz^{*}</td>
</tr>
<tr>
<td>Δ Mass-for-Height</td>
<td>+ 10.75</td>
<td>+ 1.81^{*}</td>
</tr>
<tr>
<td>Δ Weight-for-Height (lb-oz)</td>
<td>+ 23 lb 11.26 oz</td>
<td>+ 3 lb 15.82 oz^{*}</td>
</tr>
<tr>
<td>STATUS (μ)</td>
<td>17.84% OBESE</td>
<td>3.74% OBESE^{*}</td>
</tr>
<tr>
<td>BMI, 10^{3}μh^{2} (kg/m^{2})</td>
<td>24.77</td>
<td>20.92</td>
</tr>
</tbody>
</table>

*Valid if the mother is ‘not pregnant’; in case of pregnancy add estimated weight of fetus and re-determine difference of mass (weight)-for-height and status

Mathematical Model

Growth-and-obesity profile of the family was determined by first converting dates of birth and dates of measurement (all dates recorded as YYYY-MM-DD; year in four digits-month in two digits-day in two digits) in decimal form and computing age as their difference (Appendix A gives the detailed procedure). For father (mother), height and mass percentiles of boy (girl) at the age 20 years were used to determine percentiles of measured height and mass, P(h) and P(μ), respectively, by linear interpolation. For this purpose, percentiles in the growth table corresponding to lower and higher values were used in the equation of straight line (2-point form). Once the height percentile, P(h), was available, mass corresponding to this percentile was determined as ‘Optimal Mass’, \(μ_{opt} \); the concept of optimal mass is being introduced in this paper to estimate status (pertaining-to-weight). If net mass, \(μ \), was more (less) than the optimal mass, the person was considered as obese (wasted). Net mass (mass with zero clothing) was obtained by subtracting clothing correction from gross mass (mass in indoor clothes). Status (pertaining-to-mass) was expressed as a percentage

\[
STATUS (μ) = 100 \frac{μ - μ_{opt}}{μ_{opt}} \%
\]

1% variation from optimal mass (end points included) was considered normal (cf. Table 1). Equations (1) are used to compute adult-mid-parental (target) heights for boy and girl. Percentiles, corresponding to target heights (cf. Table 2), were obtained using procedures similar to those for obtaining percentiles corresponding to heights of father and mother. Percentile corresponding to height (mass) of child was determined by first computing heights at the given age, which were lesser and greater than the measured height (mass) using linear interpolation (constant-percentile route; computations were done for 3 or 4 percentiles, to make sure that the required interval was not missed). Once the upper and the lower bounds were available at the given age, required percentile was determined by another linear inter-

Table 2. Adult-mid-parental (Target) heights

<table>
<thead>
<tr>
<th>Case Number</th>
<th>SGPP-KHI-20080104-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult-Mid-Parental (Target) Height (cm)</td>
<td>168.6</td>
</tr>
<tr>
<td>Adult-Mid-Parental (Target) Height (ft-in)</td>
<td>5 ft 6.38 in</td>
</tr>
<tr>
<td>Percentile-of-Mid-Parental Height</td>
<td>13.67^{p}</td>
</tr>
</tbody>
</table>
Table 3. Growth-and-Obesity Profiles of children

<table>
<thead>
<tr>
<th>Child’s Initials</th>
<th>E. M.</th>
<th>L. M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Number</td>
<td>SGPP-KHI-20080104-02</td>
<td></td>
</tr>
</tbody>
</table>

Photograph

Scanned Signatures

<table>
<thead>
<tr>
<th>Case Number</th>
<th>SGPP-KHI-20080104-02</th>
</tr>
</thead>
</table>

Gender

Date of Birth (YYYY-MM-DD)

Birth Weight (lb)

Date of Checkup (YYYY-MM-DD)

Age (years)

Height, h (cm)

Height (ft-in)

Percentile-of-Height, P(h)

Mid-Parental-Height Percentile

Current-Age-Mid-Parental Height (cm)

Δ Height-for-Age (cm)

Δ Height-for-Age (in)

Estimated-Adult Height (cm)

Estimated-Adult Height (ft-in)

STATUS (h)

Gross Mass (kg)

Clothing Correction (kg)

Net Mass, μ (kg)

Net Weight (lb-oz)

Percentile-of-Mass, P(μ)

Optimal Mass (kg)

Optimal Weight (lb-oz)

Δ Mass-for-Height (kg)

Δ Weight-for-Height (lb-oz)

Estimated-Adult Mass (kg)

Estimated-Adult Weight (lb-oz)

STATUS (μ)

BMI, 10^2μh^2 (kg/m^2)

Photograph and scanned signatures on the day, check up was conducted. In order to protect the privacy of M. Family, the photographs, inserted in these Growth-and-Obesity Profiles, do not show the actual children, although they are from the set of patients, who reported to SF Growth-and-Imaging Laboratory for checkups. Further, family labels and children’s initials do not correspond to first letters in actual names (as per confidentiality standards). Same is true about case numbers appearing in the main and the auxiliary documents. They are not the ones, which are used to classify patient record and appear on the reports issued to patients.

Cutoff heights for induction in Armed Forces of Pakistan: Boy 5 feet 4 inches (162.56 cm); Girls 5 feet 2 inches (157.48 cm)

Clothing correction was taken as zero for both children. The girls were weighed and measured wearing panties only, barefoot and stripped to waist. (+) means the child has excess height as compared to current-age-mid-parental height, but is not considered tall.
GROWTH-AND-OBESITY PROFILES OF CHILDREN OF KARACHI

Fig. 1. Bar chart representing heights of girls

(wasted). Similarly, if the height percentile was greater (lesser) than the target-height percentile, the child was considered as tall (stunted). Optimal mass could be computed by 2 routes. First one was the constant-age route, which determined upper (lower) limit of optimal mass for later- (earlier-) age grid. From these limits, optimal mass was computed by linear interpolation (constant-percentile route). Second one was the constant-percentile route, which determined upper (lower) limit of optimal mass for higher (lower) percentile. From these limits, optimal mass was computed by linear interpolation (constant-age route). Both of these procedures gave identical results. Obesity profile was, then, determined using equation (2). A similar method was used to compute mid-parental height at current age, based on the percentile obtained earlier. A comparison of measured, h, and current-age-mid-parental heights, h_{CA-MP}, would indicate if the child is tall (stunted). Status (pertaining-to-height) could be expressed as a percentage using:

$$ STATUS (h) = 100 \left(\frac{h - h_{CA-MP}}{h_{CA-MP}} \right) \% $$

1% variation from current-age-mid-parental height (end points included) was considered normal. The above procedure was termed as ‘Box Interpolation’. This procedure works well when the height and mass percentiles, both, lie between 3 and 97. Procedures for extreme cases are listed in Appendix B.

Sample Growth-and-Obesity Profile of M. Family (SGPP-KHI-20080104-02)

Estimated-adult heights and estimated-adult masses (weights) are based on percentiles of current height and mass, respectively. Parents’ obesity profiles and adult-mid-parental (target) heights are listed in Tables 1 and 2, respectively. Table 3 lists growth-and-obesity profiles of children. Figures 1 and 2 consist of bar-chart representations of heights and masses (as mass of E M. lies below 3rd percentile, her adult mass could not be compu-

Fig. 2. Bar chart representing masses of girls, yellow bar for E. M. gives upper limit (her mass lies below 3rd percentile)
Fig. 3. Percentiles of heights and masses of girls; pink square for E. M. gives upper limit (her mass lies below 3rd percentile) — solid line gives mid-parental (reference) percentile

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. M.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FATHER has 10.75 kg EXCESS mass (OVERWEIGHT by 23 lb 11.26 oz) for height [17.64% OBESE]. **MOTHER** has 1.81 kg EXCESS mass (OVERWEIGHT by 3 lb 15.82 oz) for height [3.74% OBESE], provided she is not pregnant (see note below Table 1). Since both children are girls, mid-parental percentile, 13th, is taken as reference.

Height Profile (E. M.): At the age of 9.17 years, (average) height of E. M. comes out to 128.15 cm (4 ft 2.43 in), which lies at 18th (18.45 to be exact) percentile [1.00% (+)]. E. M. has 1.27 cm (0.50 in) EXCESS height with respect to the mid-parental (reference) height at the current age, but is not considered tall. Based on this percentile, her estimated-adult height comes out to be 157.14 cm (5 ft 1.87 in).

Mass Profile (E. M.): At the age of 9.17 years, (average) net mass (weight) of E. M. comes out to 18.9 kg (41 lb 10.79 oz), which lies below 3rd percentile [24.73% WASTED]. E. M. has 6.21 kg LESSER mass (UNDERWEIGHT by 13 lb 11.06 oz) for her height. Based on this percentile, her estimated-adult mass (weight) comes out to be less than 45.25 kg (less than 99 lb 12.42 oz).

Height Profile (L. M.): At the age of 6.27 years, (average) height of L. M. comes out to 117.15 cm (3 ft 10.12 in), which lies at 57th (56.67 to be exact) percentile [6.04% TALL]. L. M. has 6.68 cm (2.63 in) EXCESS height with respect to the mid-parental (reference) height at the current age. Based on this percentile, her estimated-adult height comes out to be 164.57 cm (5 ft 4.79 in).

Mass Profile (L. M.): At the age of 6.27 years, (average) net mass (weight) of L. M. comes out to 17.2 kg (37 lb 14.82 oz), which lies at 7th (6.87 to be exact) percentile [19.80% WASTED]. L. M. has 4.29 kg LESSER mass (UNDERWEIGHT by 9 lb 7.30 oz) for her height. Based on this percentile, her estimated-adult mass (weight) comes out to be 47.15 kg (103 lb 15.58 oz).

Study Population and Parameters

Families from different localities of Karachi were invited to participate in the study. We studied those families in which children 3-10-year old were not suffering from any disease and both parents were willing to come to SF Growth-and-Imaging Laboratory for measurements. Results from 70 participants (17 fathers + 17 mothers + 16 boys + 20 girls) are presented. Based on the above mathematical model, a detailed growth-and-obesity profile of each family was generated and prevalence of obesity among children was studied keeping in view whether one or both parents are obese.

RESULTS

Out of 16 boys, 6 were found to be obese (both parents obese), 4 in the normal range (both parents obese) and 5 wasted (3 had both parents obese, 2 had wasted fathers and obese mothers). Obesity status for one boy could not be determined because his height and weight both fell below 3rd percentile. Out of 20 girls, 3 were found to be obese.
(both parents obese), 4 in the normal range (both parents obese) and 12 wasted (11 had both parents obese, 1 had normal father and wasted mother). Obesity status for one girl could not be determined because her height and weight both fell below 3rd percentile. Next, we considered prevalence of obesity in children of families, where both parents were obese. There were 15 such families. Out of a total of 13 such boys, 6 were obese (46.15%), 4 normal (30.77%) and 3 wasted (23.08%), whereas among 17 such girls, 3 were obese (17.65%), 4 normal (23.53%) and 10 wasted (58.82%). Hence, it appears that boys have a greater risk of obesity as compared to girls, while both parents were obese. Girls, in these families, on the other hand, are showing a tendency of being overweight — a common phenomenon in developing countries undergoing the nutrition transition (Armstrong et al., 2003; Caballero, 2005; Jnabhai et al., 2003).

DISCUSSION

Childhood obesity is associated with a number of adverse consequences (Dietz and Robinson, 2005). Even a very small amount of increase in weight is going to elevate the risk factor of coronary heart disease in adulthood (Baker et al., 2007; Bibbins-Domingo et al., 2007). Obesity, combined with inactivity, has been linked to diabetes (Rocchini, 2002; Sinha et al., 2002) and cancer (Roizen and Oz, 2005). Many obese children have low levels of spontaneous activity (Brukner and Khan, 2002). Degree of obesity, expressed as percentage in our method, has many clinical implica-tions in children and adolescents (Weiss et al., 2004; Jolliffe, 2004). An obese child with Blount’s disease faces significant morbidity (Campbell et al., 2006). Similarly, obesity is a common problem occurring in children with myelomeningocele that can affect independence and proficiency with transfers, mobility and self-care activities (Campbell et al., 2006).

The methods, presented in this paper, generate results in a format easily understandable by parents and older children, avoiding technical jargon. In addition to the descriptive format, the information is presented in bar chart form (for giving a general perspective to families) and tabular form (for quick review by the attending pediatrician). This growth-and-obesity profile may prove valuable for pediatricians, nutritionists (Nestle, 2006) and physical education teachers (Siedentop, 2003), who may, together, plan diet-cum-exercise programs (Seth and Shah, 2006), supplemented by medicines, if required. In addition, parental obesity profile may be taken as a guideline to initiate family-centered-optimum-weight-for-height programs. There is a dire need to accurately monitor growth and development of a child (Freedman et al., 2004; Barker et al., 2005; Lawlor et al., 2006). Failure-to-Grow (Harris et al., 2001) is the first indicator of an underlying physical problem, requiring a complete examination by a pediatrician. Failure-to-Thrive may signal a much deeper problem, psychosomatic in origin, which must be taken seriously requiring a head-to-toe (stripped totally) examination as well as a psychiatric evaluation of the child to rule out neglect, emotional, physical or sexual abuse. According to Adam, “growth hormone is necessary, but not sufficient for a successful childhood” (Chianese, 2005). The authors recommend nationwide programs (Sultz and Young, 2004) to monitor height and weight of 3-10-year-old children, with improved techniques for measurement of height and weight (height and weight can now be measured to accuracies of 0.01 cm and 0.01 kg, respectively — Kamal, 2010), combined with a comprehensive approach to manage pediatric obesity (Miller and Silverstein, 2007), to ensure a happy, a healthy and an emotionally balanced adulthood, resulting in increase in life expectancy (Olshansky et al., 2005).

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Dr. Pirzada Q. R. Siddiqui, Vice Chancellor, for his patronage and constant appreciation of the group’s work, Prof. Dr. Shahana Urooj Kazmi and Prof. Dr. Nasiruddin Khan, Pro-Vice Chancellors, for their encouragement, Prof. Dr. Darakhshan Jabeen Haleem, Dean, Faculty of Science, for financial assistance in the form of Dean’s Research Grant, Prof. Dr. Sarwar Jahan Abbasi, Chairwoman, Department of Mathematics, University of Karachi for providing infrastructure, Prof. Dr. Duré-Sami Akram, Diplomat, American Boards in Pediatrics and Ex-President, Pakistani Pediatric Association for help in clinical aspects and Munir Hussain for IT support. (Late) Syed Firdous’s assistance in conversion of growth charts to growth tables is, gratefully, acknowledged. No potential conflict of interest is identified for this work.

APPENDIX A: DATES IN FRACTIONAL FORM

Dates in the format YYYY-MM-DD may be converted to decimal form using the formulae

\[
YYYY + \frac{\text{Days}(MM - 1) + \text{Days}(DD)}{365} \quad \text{(non-leap year)}; \\
YYYY + \frac{\text{Days}(MM - 1) + \text{Days}(DD)}{366} \quad \text{(leap year)}
\]
and the data in Table 4.

APPENDIX B: EXTREME CASES (PERTANING TO OPTIMAL WEIGHT-FOR-HEIGHT)

If any one or both percentiles of height and mass, \(P(h) \) and \(P(\mu) \), lie outside the range \([3, 97]\), the procedure for status computation is different from the one reported (cf. Table 5).

- **a)** \(P(h) < 3, \ P(\mu) \geq 3 \), STATUS = \(\frac{100(\mu - \mu_{3-p})}{\mu_{3-p}} \) % OBESE, \(\mu_{3-p} = 54.5 \) kg (for males), 45.25 kg (for females) and gender-specific-age-based mass corresponding to 3rd percentile computed from growth charts (for children), examples are worked out after discussion of case \(d \) [valid even if \(P(\mu) > 97 \)].

- **b)** \(P(\mu) > 97, \ 3 \leq P(h) \leq 97 \), STATUS = \(\frac{100(\mu - \mu_{opt})}{\mu_{opt}} \) % OBESE. If \(P(h) < 3 \), use the formula given in (a).

- **c)** \(P(\mu) < 3, \ 3 \leq P(h) \leq 97 \), STATUS = \(\frac{100(\mu_{opt} - \mu)}{\mu_{opt}} \) % WASTED.

- **d)** \(P(\mu) \leq 97, \ P(h) > 97 \), STATUS = \(\frac{100(\mu_{97-p} - \mu)}{\mu_{97-p}} \) % WASTED, \(\mu_{97-p} = 101.0 \) kg (for males), 88.75 kg (for females) and gender-specific-age-based mass corresponding to 97th percentile computed from growth charts (for children), examples are worked out below [valid even if \(P(\mu) < 3 \)]. This result can be easily proved by writing the status formula as 100(1 - \(\frac{\mu}{\mu_{opt}} \)) and use >101.0 kg (>88.75 kg), in place of \(\mu_{opt} \).

Gender-Specific-Age-Based Masses

Gender-specific-age-based masses corresponding to 3rd and 97th percentiles were evaluated using the following recipe:

<table>
<thead>
<tr>
<th>(P(h))</th>
<th>(P(\mu))</th>
<th>Case (as referred below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3</td>
<td>< 3</td>
<td>Status non-determinable</td>
</tr>
<tr>
<td>< 3</td>
<td>3 \leq P(\mu) \leq 97</td>
<td>(a)</td>
</tr>
<tr>
<td>< 3</td>
<td>> 97</td>
<td>(a)</td>
</tr>
<tr>
<td>3 \leq P(h) \leq 97</td>
<td>< 3</td>
<td>(c)</td>
</tr>
<tr>
<td>3 \leq P(h) \leq 97</td>
<td>3 \leq P(\mu) \leq 97</td>
<td>Regular calculations</td>
</tr>
<tr>
<td>3 \leq P(h) \leq 97</td>
<td>> 97</td>
<td>(b), Regular calculations</td>
</tr>
<tr>
<td>> 97</td>
<td>< 3</td>
<td>(d)</td>
</tr>
<tr>
<td>> 97</td>
<td>3 \leq P(\mu) \leq 97</td>
<td>(d)</td>
</tr>
<tr>
<td>> 97</td>
<td>> 97</td>
<td>Status non-determinable</td>
</tr>
</tbody>
</table>
a) Corresponding to 3rd Percentile

Let us compute this parameter for the girl E. M. (SGPP-KHI-20080104-02/01), whose growth-and-obesity profile is given in Table 3. Her age is 9.17 years. From the table of masses for girls, read off the masses corresponding to 3rd percentile at ages 9.0 years and 9.5 years, as 21.5 kg and 22.5 kg, respectively. Using the equation of straight line (2-point form), with age, as independent variable, and mass, as dependent variable, \(\mu_{3-p}(9.17 \text{ years}) \) comes out to 21.84 kg. Similar calculations for a boy, T. J. (SGPP-KHI-20060412-01/04), age 5.82 years, require that one reads of the masses corresponding to 3rd percentile at ages 5.5 years and 6.0 years, as 16.0 kg and 16.5 kg and applies linear interpolation to obtain \(\mu_{3-p}(5.82 \text{ years}) \) as 16.32 kg.

b) Corresponding to 97th Percentile

Let us compute this parameter for the girl Q. J. (SGPP-KHI-20060412-01/02). Her age is 9.53 years. From the table of masses for girls, read off the masses corresponding to 97th percentile at ages 9.5 years and 10.0 years, as 47.25 kg and 51.0 kg, respectively. Using the equation of straight line (2-point form), with age, as independent variable, and mass, as dependent variable, \(\mu_{97-p}(9.53 \text{ years}) \) comes out to 47.475 kg. Similar calculations for a boy, L. T. Y. S. ((SGPP-KHI-20010105-01/01), age 7.91 years, require that one reads of the masses corresponding to 97th percentile at ages 7.5 years and 8.0 years, as 34.5 kg and 37.0 kg and applies linear interpolation to obtain \(\mu_{97-p}(7.91 \text{ years}) \) as 36.55 kg.

REFERENCES

Kamal, S. A. (2009, December 16, 17). Mathematics of experimentation, *National Conference on Physics and the World of Today*, in memory of Prof. Dr. Muhammed Razi and Prof. Dr. Muhammed Razi Hussain, Department of Physics, University of Karachi, Karachi, Pakistan, abstract#1, pp. 9, 10 (Prof. Dr. Muhammed Razi and Prof. Dr. Muhammed Razi Hussain memorial lecture), abstract: http://www.ngds-ku.org/Presentations/Physics2.pdf

(Accepted for Publication: December 2010)

ADDITIONAL NOTE (related to this paper, but not part of the published manuscript): Practice data are uploaded at: http://www.ngds-ku.org/Papers/J29/Additional_File_3.pdf — Although target (adult-mid-parental) heights for a boy and a girl are computed using different formulae, percentiles match sometimes because tables are different for males and females. Illustration of ICP model described on pp. 87, 88 is available at: http://www.ngds-ku.org/Papers/J29/Additional_File_4.pdf

Web address of this document (first author’s homepage): http://www.ngds-ku.org/Papers/J29.pdf

Abstract: [http://www.ngds-ku.org/pub/jourabstA.htm#J29]:

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOTECHNOLOGY 8 (1): 87-96, 2011