COVARIANT GENERALIZED COUPLING MODEL OF GLOBAL ELECTROCORTICAL ACTIVITY

SYED ARIF KAMAL* and KHURSHEED ATHAR SIDDIQUI

Departments of Mathematics and Physics
University of Karachi, Karachi 75270, Pakistan

ABSTRACT

Global electrocortical activity of the human brain is modeled as a system of damped harmonic oscillators. The equations are written in a covariant form using tensorial notation. Generalized coupling dependent on both the electrical potentials and their rates of change is introduced in a recently proposed covariant model of global electrocortical activity. First-order shifts in frequencies are obtained in the presence of a weak, time-varying magnetic field. A condition of impedance matching relates the coupling parameters and damping coefficients.

Keywords: Neuromagnetism, magnetoencephalography

INTRODUCTION

Brain is a complex system and brain theory is developing into a central focus among many disciplines. Functioning of the brain has long been prominent among topics of fundamental interests to biologists and physicists alike. Working of the brain presents one of the most challenging problems of neurosciences.

Wright & Kydd (1984) developed a linear model for global electrocortical activity and its control by lateral hypothalamus. They proposed that the properties of the electrocortical waves be clearly distinguished from the microscopic and nonlinear interactions, which underlie them. The model was generalized (Kamal et al., 1989) to include magnetic fields. In this covariant model we have written equations of electrical potential in dendritic trees in the comoving frame of signal.

In this paper we are suggesting a generalized coupling based on both the potentials as well as their rates of change. In the presence of a weak magnetic field varying linearly with time first-order corrections to the EEG frequencies are calculated. An external magnetic field is expected to modify the frequencies in such a way that the shift in EEG frequencies is proportional to the square root of the magnitude of the rate of change of external magnetic vector potential.

*PhD (Neuroscience); MA, Johns Hopkins, Baltimore, MD, United States; Sessional Faculty, the Aga Khan University Medical College, Karachi • paper mail: Associate Professor, Department of Mathematics, University of Karachi, Karachi 75270, Sindh, Pakistan • telephone: +92 21 9926 1300-15 ext. 2293 • e-mail: profdrakamal@gmail.com • homepage: https://www.ngds-ku.org/kamal • ORCID: 000-0002-1711-4827
Wright & Kydd (1984) developed a linear model of global electrocortical activity. Their model rests on drastic simplifications and bypasses issues of cell-to-cell coupling, details of anatomy etc. Essential theoretical features of this model may be summarized as:

a. Electrocortical recordings reflect the transformed spatial average of cortical potentials (Elul, 1972).

b. The telencephalon is assumed to be a linear wave medium with regard to the gross wave potentials although the underlying microscopic interactions may be extremely nonlinear.

c. Closed and constant boundary conditions lead the linear waves to generate activity at a large number of resonant modes, each associated with a constant natural frequency.

d. The values for the natural modes of the resonant frequencies are clustered about certain central values (Cramer's Central Limit Theorem).

e. Ascending inhibitory systems act partly to damp resonant activity and partly as a source of noiselike driving signals.

A mass of unit sources coupled to each other may be represented by a set of driven harmonic oscillator equations (j runs from 1 to n subject to the condition that i ≠ j; n is the number of synaptic connections \(\sim 10^{15} \))

\[
\frac{d^2 \phi_i}{dt^2} + D_i(t) \frac{d \phi_i}{dt} + N_i^2(t) \phi_i = \sum_j K_{ij}^1(t) \phi_j
\]

where \(\phi_i \) is the electrical potential in a segment of the dendritic tree and \(t \) is time as measured in the laboratory frame, \(D_i(t), N_i(t), K_{ij}^1(t) \) are free parameters analogous to damping coefficients, natural frequencies and coupling constants. These parameters are given physiological meaning under these assumptions:

i. All \(N_i(t), D_i(t), K_{ij}^1(t) \) have a finite variance \(\sigma_N, \sigma_D, \sigma_K \) about a mean \(\bar{N}, \bar{D}, \bar{K} \).

No particular type of distribution for \(D_i(t), N_i(t), K_{ij}^1(t) \) is assumed.

ii. All \(D_i(t), N_i(t), K_{ij}^1(t) \) are stochastically independent, as each represents processes being perturbed by very complicated nonlinearities in the interactions of the linked oscillatory sources, with diverse input signals.

Under these assumptions regarding the parameters, the Central Limit Theorem of Cramer applies as \(n \) tends to be a large number. This is a very reasonable assumption. All \(N_i(t), D_i(t), K_{ij}^1(t) \) may, therefore, be replaced by \(\bar{N}, \bar{D}, \bar{K} \). The model system is equivalent to a linear, time-invariant system while these values remain unchanged. Eq. (1) may be put in another form by defining a new set of variables. Let

\[
(2a) \quad z_k = \phi_k, \text{ if } k \text{ is an odd number}
\]

\[
(2b) \quad z_k = d\phi_{k-1}/dt, \text{ otherwise}
\]
In terms of these \(z_k \), Eq. (1) may be written as

\[
Z \frac{dZ}{dt} = A_{WK} Z
\]

where \(Z = [z_k] \); \(k = 1, 2, \ldots, m \) is an \(m \times 1 \) column vector and \(A_{WK} \) is the Wright and Kydd's state transition matrix given by

\[
A_{WK} = \begin{bmatrix}
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
-N_1^2 & -D_1 & K_1^2 & 0 & K_1^3 & \ldots & K_1^n & 0 \\
0 & 0 & 0 & 1 & 0 & \ldots & 0 & 0 \\
K_2^1 & 0 & N_2^2 & -D_2 & K_2^3 & \ldots & K_2^n & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
K_3^1 & 0 & K_3^2 & 0 & N_3^2 & \ldots & K_3^n & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots \\
K_n^1 & 0 & K_n^2 & 0 & K_n^3 & \ldots & N_n^2 & D_n \\
\end{bmatrix}
\]

The elements in Wright and Kydd's state transition matrix donot all have the same dimensions. For example, \(-N_1^2\) has units of \((\text{time})^{-2}\) whereas \(-D_1\) has units of \((\text{time})^{-1}\). In the next section, the system of equations (3) shall be written so that all the elements of \(A \) are dimensionless.

Our Covariant Model

In our covariant model (Kamal et al., 1989) equations for the time variation of potential of a dendritic tree were written in the comoving frame of signal. This comoving frame was fixed to the potential wavefront of dendrite. When this equation was transformed into the laboratory frame a magnetic vector potential appeared alongwith the electrostatic potential.

In this comoving frame a mass of unit sources coupled to each other were represented by the following set of equations

\[
\frac{d^2 \Phi_i}{d\tau^2} + D_i(\tau) \frac{d\Phi_i}{d\tau} + N_i^2(\tau) \Phi_i = \sum_j K_{ij}(\tau) \Phi_j
\]

where \(D_i(\tau), N_i^2(\tau) \) and \(K_{ij}(\tau) \) were \(4 \times 4 \) matrices with eigenvalues \(D_i^{\mu}(\tau), N_i^{\mu}(\tau) \) and \(K_{ij}^{\mu}(\tau) \) (\(\mu = 0, 1, 2, 3 \)), respectively. The quantity \(\tau \) was time in the comoving frame. Recall that \(t \) represents time as measured in the laboratory frame. In this covariant model we have taken

\[
D_i^\mu(\tau) = D_i(\tau), \text{ if } \mu = 0
\]

\[
= 0, \text{ otherwise}
\]
with similar relations for \(N_{ij}(\tau) \) and \(K_{ij}(\tau) \). In general, however, the eigenvalues corresponding to \(\mu = 1, 2, 3 \) may be different from zero (Kamal et al., 1992). The numbers, \(D_i(\tau), N_{ij}(\tau) \) and \(K_{ij}(\tau) \) may be considered to be free parameters analogous to damping coefficients, natural frequencies and coupling constants. \(\Phi_1 \) was a 4 \(\times \) 1 column vector with the first entry as the only nonzero entry representing the electrical potential \(\phi \). Eq. (5) was transformed in the laboratory frame under a similarity transformation (Lorentz transformation) with \(\lambda_i \) as the transformation matrix. Under this similarity transformation the matrices \(D_i(\tau), N_{ij}(\tau), K_{ij}(\tau) \) and the four-dimensional-spacetime-vector field \(\Phi_i \) assumed the following form

\[
\begin{align*}
(7a) \quad \Phi_i & \Rightarrow A_i = \lambda_i \Phi_i \\
(7b) \quad D_i(\tau) & \Rightarrow \Delta_i(\tau) = \lambda_i D_i(\tau) \lambda_i^{-1} \\
(7c) \quad N_{ij}(\tau) & \Rightarrow \eta_{ij}(\tau) = \lambda_i N_{ij}(\tau) \lambda_i^{-1} \\
(7d) \quad K_{ij}(\tau) & \Rightarrow \kappa_{ij}(\tau) = \lambda_i K_{ij}(\tau) \lambda_i^{-1}
\end{align*}
\]

where \(\lambda^2 = g \lambda g, g_{\mu\nu} \) is the metric tensor (\(\mu, \nu = 0, 1, 2, 3 \)) with \(g_{rr} = 1; \ r = 1, 2, 3, \ g_{00} = -1, \ g_{\mu\nu} = 0 \), otherwise. Later on, Eq. (7e), which appears after Eq. (13), shall be added to this set. Therefore, Eq. (5) may be written as

\[
A_i \frac{d^2 A_i}{d\tau^2} + A_i(\tau) \frac{dA_i}{d\tau} + \eta_i^2(\tau) A_i = \sum j \kappa_{ij}(\tau) A_j
\]

\(A_j \)’s are in fact \(A_{ij} = (\varphi, A); \ \mu = 0, 1, 2, 3 \) – the components of four-dimensional-spacetime-potential-vector field (the components of \(A_i \) contain both the electric potential and the magnetic vector potential). The state transition matrix was constructed by defining new variables \(Z_k = f(A_k,dA_k/d\tau), k = 1, ..., m \) where \(m = 2n \) (\(n \) was the number of dendritic trees considered in this model, usually \(\sim 10^{15} \)). Let us define a dimensionless parameter \(t_{scale} = \tau \Omega \) (\(\Omega \) is a scaling parameter which may be taken as the average time of travel of a signal between two neurons). The coordinates are, therefore, defined as

\[
\begin{align*}
(9a) \quad Z_k & = A_k, \text{ if } k \text{ is an odd number} \\
(9b) \quad Z_k & = dA_{k-1}/dt_{scale}, \text{ otherwise}
\end{align*}
\]

In terms of \(Z_k \), the system of equations (8) may be written as

\[
\frac{dZ}{dt} = A_{COV} Z
\]

where \(Z = [Z_k] \) is a column vector and \(A_{COV} \) is the state transition matrix. The state transition matrix is a function of \(D \)’s, \(N \)’s and \(K \)’s and \(\Omega \). The scaling parameter \(\Omega \) is introduced to make all the elements of the state transition matrix dimensionless and new variables are defined as \(\eta = \Omega \eta, \ \Omega = \Omega \Delta, \ \kappa = \Omega^2 \kappa \). The state transition matrix is a linear transformation. Different matrices could be generated by assigning different values to \(D \)’s, \(N \)’s and \(K \)’s. Each entry in this state transition matrix is itself a 4 \(\times \) 4 matrix.
Need for Generalized Coupling

In the linear model of Wright & Kydd (1984) the electrical potentials φ_i's are coupled to φ_j's through coupling parameters $K_{ij}(t)$. However, we note that a change in potential $d\varphi_j/d\tau$ induces a magnetic field because of flow of current. A magnetic field shall, in turn, exert Lorentz force on a charged particle and hence, in general, $d\varphi_j/d\tau$, shall influence φ_i.

In our covariant model (Kamal, Siddiqui & Husain, 1989) the dependence of A_i's on A_j's was also suggested when we tried to multiply two state transition matrices (Kamal, 1989). Upon multiplication of two state transition matrices we came up with nonzero coefficients for A_j's.

We are generalizing Wright & Kydd's damped coupled harmonic oscillator equations to include a generalized coupling, which also depends on $d\varphi_j/d\tau$'s. A covariant model is constructed using this coupling and state transition matrix is obtained for the generalized model.

Our Generalized Coupling Model

To introduce the generalized coupling let us modify Eq. (1) as

\[
\frac{d^2\varphi_i}{dt^2} + D_i(t)\frac{d\varphi_i}{dt} + N_i^2(t)\varphi_i = \sum_j \left[K_i^j(t)\varphi_j + M_i^j(t)\frac{d\varphi_j}{dt} \right]
\]

The $M_i^j(t)$'s are free parameters given physiological meaning under the assumptions that they have a finite variance σ_M about \overline{M} and they are stochastically independent. In the next section we are going to set up a generalized coupling model using the covariant formulation developed earlier.

COVARIANT GENERALIZED COUPLING MODEL
In the spirit of four-dimensional vector field formulation used in relativity it is desirable to express the electrodynamical equations representing global electrocortical activity in covariant form. Covariant Generalized Coupling Model is devised to serve this purpose.

Mathematical Formulation

To set up a covariant formulation let us write the electrical potential variation for a mass of unit sources coupled to each other in the comoving frame of signal passing through a segment of the dendritic tree as [compare with Eq. (5)]

\[
\frac{d^2 \Phi_i}{d\tau^2} + D_i(\tau) \frac{d\Phi_i}{d\tau} + N_i^2(\tau) \Phi_i = \sum_j \left[K_i^j(\tau) \Phi_j + M_i^j(\tau) \frac{d\Phi_j}{d\tau} \right]
\]

where \(M_i^j(\tau) \)'s are \(4 \times 4 \) matrices having eigenvalues \(M_i^{\mu}(\tau) \); \(\mu = 0, 1, 2, 3 \). No particular type of distribution for \(M_i^{\mu}(\tau) \) is assumed. All other symbols are defined after Eq. (5).

A similarity transformation under \(\lambda_i \) transforms the various spacetime vector fields and matrices as given in Eq. (7a - d). The \(M_i^j(\tau) \)'s transform as

\[(7e) \quad M_i^j(\tau) \Rightarrow \lambda_i^i M_i^j(\tau) \lambda_i^{-1}
\]

Eq. (13), therefore, becomes [compare with Eq. (8)]

\[
\frac{d^2 A_i}{d\tau^2} + A_i(\tau) \frac{dA_i}{d\tau} + \eta_i^2(\tau) A_i = \sum_j \left[\kappa_i^j(\tau) A_j + \mu_i^j(\tau) \frac{dA_j}{d\tau} \right]
\]

Introducing the generalized coordinates defined in Eq. (9a, b) we obtain an eigenvalue equation of the form of Eq. (10). The state transition matrix is now a function of \(D \)'s, \(N \)'s, \(K \)'s, \(M \)'s and \(\Omega \). If we introduce \(\mathbf{M}_i^j(\tau) = \Omega \mu_i^j(\tau) \) to make all the elements dimensionless, the generalized coupling state transition matrix, \(\mathcal{A}_{CGC} \), becomes

\[
(15) \quad \mathcal{A}_{CGC} = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
-N_1^2 & -D_1 & K_1^2 & M_1^2 & K_1^3 & \cdots & B_1^m & M_1^m \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
K_2^1 & M_2^1 & -N_2^2 & -D_2 & K_2^3 & \cdots & B_2^m & M_2^m \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
K_3^1 & M_3^1 & K_3^2 & M_3^2 & -N_3^2 & \cdots & B_3^m & M_3^m \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
& & & & & \cdots & \cdots & \cdots & \cdots \\
K_n^1 & M_n^1 & K_n^2 & M_n^2 & K_n^3 & \cdots & -N_n^2 & -D_n
\end{bmatrix}
\]

Compare Eq. (15) with Eq. (11). The state transition matrix is a linear transformation and the set of state transition matrices forms a group under the operation of matrix multiplication. The identity of this group corresponds to the physiological state of brain...
death. This can be shown easily for this set of state transition matrices by applying a reasoning similar to one presented earlier for the covariant model (Siddiqui et al., 1993).

Predictions — Effects of Weak External Magnetic Field

Consider the effects of a weak magnetic field $\mathbf{B}_{\text{ext}} (\sim 10^{-16}$ tesla) which is assumed to be uniform throughout the region concerned (The ambient magnetic field noise is much greater than 10^{-16} tesla. Therefore, a magnetically shielded room is needed to perform any measurement related to these weak fields). The magnetic field, not varying with time, is generated by a vector potential such that $\mathbf{B}_{\text{ext}} = \nabla \times \mathbf{A}_{\text{ext}}$. (In order to calculate the shifts in frequencies based on a certain form of magnetic vector potential, a magnetic field corresponding to that potential can always be determined using the above equation). The four-dimensional spacetime vector potential field is \mathbf{A}_{ext}. In the presence of this field the natural frequencies $N_i(\tau)$ will be modified to $N_i'(\tau)$. However, the damping coefficients and couplings of the individual A_i's and $(dA_i/d\tau)$'s will remain unchanged. Klitzing (1989) has shown that the effects of weak magnetic fields on the EEG of man are large enough to be measured. Therefore, Eq. (14) takes the following form in the laboratory frame

$$
\sum \mathbf{A}_{\text{ext}}\left(\mathbf{A}_{\text{ext}}\right) - \mathbf{A}_{\text{ext}} = \sum A_i A_i' + \mathbf{A}_{\text{ext}} A_i' = \sum_j A_j A_j' + \mathbf{A}_{\text{ext}} A_j' \]
$$

where $A_i' = A_i + A_{\text{ext}}$. Since the signal velocities are very small as compared to the velocity of light, we take $t \approx \tau$. The external field $A_{\text{ext}}(x, y, z)$ does not depend on time. We, therefore, have

$$
d_2 A_i' \frac{dA_i'}{d\tau^2} + A_i(\tau) \frac{dA_i'}{d\tau} + \eta_i^2(\tau) A_i' = \sum_j A_j' \left[\kappa_j(\tau) A_j' + \mu_j(\tau) \frac{dA_j'}{d\tau} \right]
$$

The matrices $\delta\eta^2$'s are 4×4 matrices having eigenvalues δ^μ; $\mu = 0, 1, 2, 3$, representing the shifts in frequencies. Subtracting Eq. (14) from Eq. (16) and introducing, $\eta_i^2 = \eta_i^2 + \delta\eta_i^2$, we have

$$
\delta\eta_i^2 A_i' = -(\eta_i^2 - \sum_j \kappa_j) A_{\text{ext}}
$$

We assume that $\delta\eta$, κ_j and η_i can all be simultaneously diagonalized. In other words, $[\delta\eta, \kappa_j] = 0$, $[\delta\eta, \eta_i] = 0$ etc. Applying the transformation $\delta\eta \Rightarrow \lambda_1 \delta\eta$, $\lambda = \delta\mathbf{N}_1$ etc. to write Eq. (17) in the comoving frame of the signal, we

$$
\delta\mathbf{N}_1^2 A_i' = -(\mathbf{N}_1^2 - \sum_j \mathbf{K}_j) (A_{\text{ext}})_{i}^-
$$

Although the EEG sources are not equivalent to isolated oscillating charges in a dielectric medium, an equivalent 4-potential can be found out for the electric fields in the brain. In fact, EEG gives the average effect and hence the effects of interaction of an external magnetic field with this equivalent four-dimensional spacetime vector potential field could be computed.
where $A_i' = A_i + (A_{ext})_i$; $(A_{ext})_i = \lambda_i A_{ext}$. The matrices N_i, N_i and K^j_i are already diagonalized. Eq. (18) shall yield four equations each one sufficient to determine an eigenvalues δ^μ. The results are

$$ (\delta^\mu)^2 = [\Sigma_j K^\mu_j - (N^\mu_j)^2] \Theta^\mu $$

where $\Theta^\mu = -\gamma_i v_i A_{ext} (\varphi_i - \gamma_i v_i A_{ext})$, $\Theta^\mu = 1; r = 1, 2, 3$.

This is the same result we obtained in the covariant model (Kamal, Siddiqui & Husain, 1992). We note that all the factors related to generalized coupling with $dA/d\tau$ have canceled out. Therefore, we conclude that a weak, uniform, stationary magnetic field shall give the same first-order shift in frequencies in the presence of generalized coupling.

Suggested Test for Covariant Generalized Coupling Model

In order to see the effects of generalized coupling on the frequency shift we consider a magnetic field $B_{ext}(t)$ which is generated by a vector potential $A_{ext}(t)$ varying linearly with time. Defining a four-dimensional spacetime vector potential field A_{ext}, we may write Eq. (5) in the presence of a weak magnetic field. Since $A_i' = A_i + A_{ext}$, and $A_{ext}(x, y, z, t)$ has a linear time dependence, we have

$$ \frac{d^2 A_i}{dt^2} = \frac{d^2 A_i}{dt^2} \neq \frac{d^2 A_i}{dt} $$

Subtracting Eq. (14) from Eq. (16) and introducing $\delta \eta$ as the first-order correction to η, we have [compare with Eq. (17)]

$$ \delta \eta^2 A_i' = -(\eta_i^2 - \Sigma_j K^j_i)A_{ext} - (\varphi_i - \Sigma_j \mu^j_i) \frac{dA_{ext}}{dt} $$

If all the matrices can be simultaneously diagonalized, Eq. (20) may be written in the comoving frame of the signal as

$$ \delta N_i^2 A_i' = -(\Sigma_j K^j_i)A_{ext} - (\varphi_i - \Sigma_j \mu^j_i) \left(\frac{dA_{ext}}{dt} \right) $$

where $(dA_{ext}/dt)_i = \lambda_i A_{ext}/dt$. The matrices δN_i, N_i, K^j_i and M^j_i are already diagonalized. Eq. (21) shall yield four equations, which may be solved to determine the eigenvalues δ^μ. The results are

$$ (\delta^\mu)^2 = [\Sigma_j K^\mu_j - (N^\mu_j)^2] \Theta^\mu + [\Sigma_j M^\mu_j - (D^\mu_j)^2] \zeta^\mu $$

The factors ζ^μ are given by

$$ \zeta^0 = \left(\gamma_i \frac{dA_{ext}}{dt} - \gamma_i v_i \cdot \frac{dA_{ext}}{dt} \right) / (\gamma_i \varphi_{ext} + \varphi_i - \gamma_i v_i \cdot A_{ext}) $$

$$ \zeta^r = \left[\Im (A_{ext}^r) \right]^{-1} d\Im (A_{ext}^r)/dt; r = 1, 2, 3 $$

with $\Im (A_{ext}^r) = -\gamma_i \varphi_{ext} + A_{ext}^r + (v_i \cdot A_{ext}) v^i (\gamma_i - 1)/v_i^2$.

Model of Electrocortical Activity
Before discussing the set of equations (22) let us first consider what do we mean by shifts in frequencies of EEG when we know that there are no well-defined frequencies in EEG. Although there is not a single well-defined frequency in EEG every rhythm has a finite range and variance of frequencies. Therefore, according to Cramer’s Central Limit Theorem (Kamal, 1989; Wright & Kydd, 1984) the frequencies may be assumed to be clustered around their average values. For the purpose of testing this model shifts in the frequencies may be interpreted as shifts in the average frequencies. The shifts in frequencies, given by Eq. (22), may represent measure of strength of coupling through the factor, [\Sigma K_{ij}^{\mu} - (N_i^{\mu})^2]

a. If the coupling is strong i.e. \(\Sigma K_{ij}^{\mu} > (N_i^{\mu})^2 \), a slight increase in frequencies may be expected.

b. If \(\Sigma K_{ij}^{\mu} = (N_i^{\mu})^2 \), frequencies may not be shifted.

c. If \(\Sigma K_{ij}^{\mu} < (N_i^{\mu})^2 \), a decaying exponential may be found in the EEG spectrum.

Therefore, one may observe modulation of frequencies. Note that field is applied in the \(x \) direction. If its magnitude is changed from \(-\epsilon\) to \(+\epsilon\) in a period of time \(\Delta t \), \(i.e. \) on the average \(|A_{ext}| = 0 \), we expect that

\[
\delta_1^0 \propto \sqrt{\frac{dA_{ext}}{dt}}
\]

Using Cramer’s Central Limit Theorem to replace the individual frequencies by their averages, we get

\[
\delta^0 \propto \sqrt{\frac{dA_{ext}}{dt}}
\]

This prediction may be checked experimentally. An experiment may be designed in which a magnetic field varying linearly with time

\[
A_{ext} = A_0 (a + bt)
\]

may be applied. For 100 different sets of \(a \) and \(b \) the shifts in frequencies \(< \delta^0 \) may be noted. Correlation of \(\delta^0 \) and \(\sqrt{\frac{dA_{ext}}{dt}} = \sqrt{|A_0 b|} \) may, then, be studied. Klitzing (1989) suggests that static magnetic fields increase the power intensity of EEG of man. However, no studies have been conducted to study the shifts as predicted in this model.

Because of the presence of the factor \((A_{ext})^{-1} dA_{ext}/dt\) in Eq. (23b-d), the frequencies will become unbounded when \(|A_{ext}| = 0 \). This is not possible, physically. We, therefore, conclude that
Model of Electrocortical Activity

\[(26) \quad \sum_j M_{ij}^r = D_i^r; \ r = 1, 2, 3 \]

This may be considered as a condition of impedance matching.

DISCUSSION AND CONCLUSION

Generalized coupling model presented here proposes a new mechanism for the interactions of neurons responsible for the output of EEG. Since EEG provides statistical information we have to obtain a statistical estimate to be able to handle such a large number of parameters. The number of parameters in the model may, however, be considerably reduced by considering the nearest neighbor interaction. Wright and Kydd (1984) have considered \(n = 50 \) to calculate the power spectrum in their linear model. The same procedure may be applied to this model.

At present we are trying to simulate coupled harmonic oscillators to be compared later with the digitized electroencephalograms provided by local neurologists (Siddiqui, Kamal & Khan, 1990). This endeavor may give us a better idea of how the estimates of \(D_i's, N_i's, K_{ij}'s \) and \(M_{ij}'s \) would be constrained by the biological data. Another approach may be to study system response by transfer function approach. Transfer functions of the various models considered in this paper are given in the appendix.

ACKNOWLEDGEMENT

One of the authors (SAK) is indebted to Ashab Mirza for discussions related to transfer functions included in the appendix.

APPENDIX: Transfer Functions

In the following listing first equation represents the basic equation representing coupled oscillations. Second equation gives the transfer function.

Linear Model of Wright and Kydd

\[
\frac{d^2 \phi_i}{dt^2} + D_i(t) \frac{d\phi_i}{dt} + N_i^2(t) \phi_i = \sum_j K_{ij}^1(t) \phi_j, \quad \frac{\phi_i}{\phi_j} = \frac{K_{ij}^1(t)}{D^2 + D_i(t)D + N_i^2(t)}, \quad \text{where} \quad D^n = \frac{d^n}{dt^n}
\]

Generalized Coupling Model

\[
\frac{d^2 \phi_i}{dt^2} + D_i(t) \frac{d\phi_i}{dt} + N_i^2(t) \phi_i = \sum_j \left[K_{ij}^1(t) \phi_j + M_{ij}^1(t) \frac{d\phi_j}{dt} \right], \quad \frac{\phi_i}{\phi_j} = \frac{K_{ij}^1(t) + M_{ij}^1(t)D}{D^2 + D_i(t)D + N_i^2(t)}
\]

Covariant Model

\[
A_i \frac{d^2 A_i}{d\tau^2} + \lambda_i(\tau) \frac{dA_i}{d\tau} + \eta_i^2(\tau) A_i = \sum_j \kappa_{ij}^1(\tau) A_j, \quad \frac{A_i}{A_j} = \frac{\sum_b |K_{ij}^1(b)|^b}{D^2 + \sum_\alpha [\lambda_i(\tau)]_\alpha D + [\eta_i^2(\tau)]_\alpha}
\]
where α, β run from 0 to 3 and $D^n = \frac{d^n}{dt^n}$

Covariant Generalized Coupling Model

$$\frac{d^2 A_i}{dr^2} + A_i(r) \frac{dA_i}{dr} + \eta_i^2(r)A_i = \sum \left[K_i^1(r)A_j + \mu_i^1(r) \frac{dA_j}{dr} \right] \frac{A_i^\mu}{A_j^\nu} = \frac{\sum \{[K_i^1(r)]^\beta \mu_i^1(r)]^\beta D \} \mu}{D^2 + \sum \{[A_i(r)]^n D + [\eta_i^2(r)]^n \}^n}$$

REFERENCES

Abstract: https://www.ngds-ku.org/pub/jourabst0.htm#J19:
Physical Sciences Section

RANA KHALID NAEEM AND NAJMA TAYYAB
SOME EXACT SOLUTIONS OF EQUATIONS OF MOTION OF A FINITELY CONDUCTING INCOMPRESSIBLE FLUID OF VARIABLE VISCOSITY IN THE PRESENCE OF A TRANSVERSE MAGNETIC FIELD VIA ONE-PARAMETER GROUP 1-9

M.I.A. AGEEL AND A. KHURSHID
NORMAL LOGNORMAL AND LOGISTIC DISTRIBUTIONS AS MODELS FOR ANNUAL PRECIPITATION IN SAUDI ARABIA 11-17

SYED NAEEM AHMED, SYED ARIF KAMAL, KHURSHEED A. SIDDIQUI, S. A. HUSAIN AND MUHAMMAD NAEEM
EEG IN WEIGHTLESSNESS - A THEORETICAL ESTIMATE 19-24

S. ANJUM, A. W. POTTS
UV PHOTOELECTRON SPECTROSCOPY OF ZINC SURFACE USING XUV PHOTOELECTRON MICROSCOPE 25-28

SYED ARIF KAMAL AND KHURSHEED A. SIDDIQUI
COVARIANT GENERALIZED COUPLING MODEL OF GLOBAL ELECTROCORTICAL ACTIVITY 29-39

S.M.M.R. NAQVI, S. DABIR H. RIZVI AND S.M. ZIA-UL-HAQE
ON THE LEAD DOPED Bi-Sr-Ca-Cu-O SUPERCONDUCTOR 41-43

SAMINA KHATOON, ASIFA BANO AND SAEDAN BEGUM
ISOLATION AND STRUCTURAL STUDIES OF A STEROID AND A TRITERPENOIDS FROM CLERODENDRON PHLOMOIDIS 45-49

Biological Sciences Section

MAHERUKH MUKHTAR AND SALEHA HASNI
STUDIES ON SERUM MINERALS IN DIABETES MELLITUS 51-55

NUZHAT AHMED AND SALMA RAIHAN
NICKEL RESISTANCE AND ACCUMULATION BY E.coli STRAINS ISOLATED FROM INDUSTRIAL EFFLUENT 57-63

M. ASLAM MEMON, M. UMAR DHOT M. HANIF MEMON AND Z.H. SHAH
SPECTROPHOTOMETRIC DETERMINATION OF VITAMIN C IN DRUG BY MONITORING TRIS FERROZINE ION(II) COMPLEX IN ACETATE BUFFER MEDIA 65-70

MUHAMMAD AKRAM
EVALUATION OF TAXONOMICALLY IMPORTANT MORPHOLOGICAL CHARACTERISTICS OF CUCULLANIDS 71-80

HAJRA AZHAR ALI
LEVEL OF GAMMA RADIATION INDUCED ABA LIKE COMPOUNDS DURING GERMINATION OF WHEAT AND SOYBEAN SEEDS 81-86