GROUP STRUCTURE OF A COVARIANT MODEL
OF GLOBAL ELECTROCORTICAL ACTIVITY

KHURSHEED A. SIDDIQUI, SYED ARIF KAMAL
S.A. HUSAIN AND N. U. KHAN

Department of Physics,
*Department of Mathematics,
University of Karachi, Karachi-75270, Pakistan

ABSTRACT:

Group structure of a recently developed covariant model of global electrocortical activity suggests a possible link between the identity of the group and the phenomenon of brain death.

INTRODUCTION

We have recently developed a covariant model of brain dealing with the global electrocortical activity (Kamal. 1989; Kamal, Siddiqui and Husain, 1989; 1992; Kamal, Siddiqui, Husain, Naeem and Khan, 1992; Siddiqui and Kamal, 1992; Siddiqui, Kamal and Khan, 1990). This model is a generalization of Wright and Kydd’s linear model (Wright and Kydd, 1984). In this model electrical potentials of different dendritic segments are written as harmonic oscillator equations with damping coefficients, natural frequencies and coupling constants as open parameters. We have rewritten these equations in the comoving frame of the signal. Transformation to the laboratory frame has generated magnetic fields. In this paper we are considering the symmetries of the state transition matrix introduced in that model.

Essential theoretical features

Essential theoretical features of our model can be summarized as:

(a) Electrocortical recordings reflect the transformed spatial average of cortical potentials (Elul, 1972).
(b) The telencephalon is assumed to be a linear wave medium with regard to the gross wave potentials although the underlying microscopic interactions may be extremely non-linear.
(c) Closed and constant boundary conditions lead the linear waves to generate ac-
tivity at a large number of resonant modes, each associated with a constant natural frequency.

d) The values for the natural modes of the resonant frequencies are clustered about certain central values (Cramer's Central Limit Theorem).

e) Ascending inhibitory systems act partly to damp resonant activity and partly as a source of noise like driving signals.

f) An electrical potential in a comoving frame of the signal transforms as four-poten-
tial in the laboratory frame.

Mathematical model

A mass of unit sources coupled to each other are represented by (Kamal, Siddiqui
and Husain, 1989).

\[\ddot{A}_t + \Delta(t) A_t + \eta_t A_t^2(t) A_t = \sum_j \kappa_j \dot{\tau}(t) A_j \] (1)

were \(\Delta(t) \), \(\eta_t \), and \(\kappa_j \dot{\tau}(t) \) are 4 x 4 matrices generated by a similarity transformation with \(\lambda_t \) (Lorentz transformation) as the transformation matrix. Their eigen-
values \(D_t(\tau) \), \(N_t(\tau) \), and \(K_j \dot{\tau}(\tau) \) are free parameters analogous to damping coefficients, natural frequencies and coupling constants respectively. \(A_j \) is in fact \(A_t \mu = [\phi/A] \); \(\mu = 0,1,2,3 \), which is the 4-potential. The state transition matrix is constructed by
defining new variables \(\Omega_k = f(A_t, A_t) \ k = 1 \ldots m \), where \(m = 2n \) (\(n \) is the number of dendritic trees considered in the model, usually of the order of \(10^{15} \)). Let us define a dimensionless parameter \(t = \tau/\varepsilon \) (\(\varepsilon \) is a scaling parameter which may be taken as the average time of travel of a signal between two neurons). The coordinates are defined as:

\[\Omega_k = A_k \quad \text{if } k \text{ is an odd number} \]
\[\Omega_k = dA_k dt \quad \text{if } k \text{ is an even number} \]

In terms of \(\Omega_k \), eq. (1) can be written as

\[\frac{dZ}{d\tau} = AZ \]

where \(Z = [\omega_k] \) is a column vector and \(A \) is the state transition matrix.

Symmetries of the state transition matrix

Let us consider the symmetries of state transition matrix. The state transition matrix
is a linear transformation. It is in fact a set of matrices. Different matrices could be generated by assigning different values to D's, N's and K's. Note that $\eta = \epsilon \eta$, $\Delta = \epsilon \Delta$, $\kappa = \epsilon^2 \kappa$ are introduced to make all the elements of the state transition matrix dimensionless. Each entry in this state transition matrix \mathbf{A} is itself a 4×4 matrix. The matrix is neither symmetric nor hermitian. However, it is worthwhile to look if the matrix \mathbf{A} forms a group the operation of matrix multiplication. To do so let us first transform the matrix by interchanging alternate columns, bringing the first in place of second ects. By block diagonalization we construct a non-singular matrix \mathbf{A}. In the next section we shall look into the group structure formed by the set of matrices (A).

The determinant of \mathbf{A} is just the negative of the determinant of Wright and Kydd’s transition matrix \mathbf{A}. For $n = 2$ the determinant of \mathbf{A} may be written as:

$$
\begin{vmatrix}
\pi & N_1^2 & \cdots & |e_{ij}| & N_1^2 \cdot N_j^2 \cdot K^k \cdot K^{i-k} & N_1^2 \\
1 & 1 & 1 & \cdots & 1 & 1 \\
2 & 2 & 2 & \cdots & 2 & 2 \\
3 & 3 & 3 & \cdots & 3 & 3 \\
4 & 4 & 4 & \cdots & 4 & 4 \\
\end{vmatrix}
$$

where

$$
\begin{bmatrix}
342 \\
234 \\
\end{bmatrix} = K_{23}K_{34}K_{42} \text{ etc.}
$$

The determinant looks complicated. However, we note that each term is of degree $2n$ having a degree k in powers of N_i^2 and a degree $(2n - k)$ in powers of products of K_i^j where k ranges from 0 to $2n$. A general determinant can be written as a polynomial in N's and K's with the coefficients K's determined by the irreducible representations of the classes of the permutation group $S(2n)$. The class containing identity
can be identified with the term $\prod N_i^2$ having a positive sign. The next comes with a negative sign. The sign alternates with the classes with the exception that the last class always comes with a negative sign. It is, therefore, concluded that:

(a) The determinant is independent of the damping coefficients D_i's. Since the determinant is product of eigenvalues, the eigenvalues do not depend on the damping coefficients.

(b) We can always construct a nonsingular matrix out of the state transition matrix A.

Group Structure

The matrix A is neither symmetric nor hermitian. However, it is worthwhile to look if the matrix A forms a group under the operation of matrix multiplication.

(i) **Closure Property:**

Let us take two matrices A_1 and A_2. Upon examining the product $A_1 A_2$ we note that the elements of the first row are of the form $0,1,0,0,\ldots,0$ as $A_1 A_2$. In the second row of A_1 and A_2, we have N's, D's, and ciphers. The elements of second row of $A_1 A_2$ have in some places nonzero entries in place of ciphers. Third row again contains $0,0,0,1,0,\ldots$, as in the original matrices. Since the matrix A is a linear transformation, the ciphers in the second row indicate that there is no dependence of θ_j's on θ_i in the particular situation considered. However, in general θ_j's may depend on θ_j's. This possibility is considered elsewhere (Kamal, 1989; Kamal, Siddiqui, Husain, Naeem and Khan, 1992). Since the form of A is retained under multiplication, the set of state transition matrices is closed under matrix multiplication. To do so we interchange alternate columns, bringing second in place of first etc.

(ii) **Associativity:**

Since A's are $m \times m$ matrices, they must satisfy the properties of matrix algebra, in particular associativity property of matrix multiplication.

(iii) **Existence of Identity:**

The identity is obtained by taking $D_i = 0, K_i^j = 0, N_i = -1$ etc.

(iv) **Existence of Inverse:**

We have shown above that the matrix A is nonsingular. Therefore its inverse exists. It can be shown that the inverse is also a member of the set of nonsingular matrices constructed from the state transition matrices (A).

Therefore the set (A) consisting of nonsingular matrices constructed from the set of state transition matrices (A) forms a group.
Brain death as identity of the state transition matrix group

The most interesting conclusion comes from looking at the identity of the state transition group. Looking at (2) we find that the identity is obtained by taking $D_i = O$, $K_i^j = O$, $N_{ij} = -1$ etc. The first condition states that there is no damping present. The second condition means that there is no interaction present among the neighboring neurons i.e. the neurons are decoupled. The condition on $\eta \sqrt{2}$ gives the eigenvalues of natural frequency as $\tilde{\eta} = \pm i$. In the solution of (1), the expression $\exp(\tilde{\eta} N t)$ with the eigenvalues of $\tilde{\eta}$ as $-i$ does not represent a physiological situation. However, the eigen-values $+i$ represents a decaying exponential. On the electroencephalogram this would correspond to brain death (Doreland's, 1982) - a biological state manifested by absolute unresponsiveness to all stimuli, absence of all spontaneous muscle activity, and an iso-electric electroencephalogram for 30 minutes, in the absence of hypothermia or intoxication by central nervous system depressants.

The physical picture

Physically we can visualize the identity of the state transition matrix group in the presence of a strong field. A strong magnetic field will decouple the neurons causing all the K_i^js to vanish. The neurons will, therefore, act independently and have no interaction with the neighboring neurons. For such independent oscillators Cramer's Central Limit Theorem could not be applied. There will be no resonance and the oscillations will die out quickly as suggested by the eigenvalues $+i$ in the expression $\exp(\tilde{\eta} N t)$. Damping could also be modelled by considering a single neuron in the temperature bath of other neurons. In the absence of any interaction with the neighboring neurons we expect no damping indicated by vanishing of the coefficients D_i's.

CONCLUSION

This model, therefore, provides explanation of the phenomenon of brain death as well as a physical understanding of the nature of interaction of various neurons. A further step could be the diagonalization of the state transition matrix. Since the eigenvalues do not depend on the damping coefficients we may be able to write the system of equations which are independent of D_i's. Comparing write the equations with our original set of equations we may be able to estimate the values of D_i's. Once the determinant is evaluated we may write a generalized inverse of the state transition matrix and develop a metric tensor formulation of our model on the lines suggested by Pellaionisz and Llinas (1982).
REFERENCES

µ Full text: https://www.ngds-ku.org/Papers/J08.pdf
ν Full text: https://www.ngds-ku.org/Papers/J12.pdf
σ Abstract: https://www.ngds-ku.org/pub/confabst0.htm#C37:
τ Full text: https://www.ngds-ku.org/Papers/C35.pdf
π Full text: https://www.ngds-ku.org/Papers/J08/Wright_n_Kydd.pdf

Abstract: https://www.ngds-ku.org/pub/jourabst0.htm#J14:
CONTENTS

Physical Sciences Section
Razia Afzal Niazi — An Economic Analysis of the Commercial Fisheries of Pakistan 1
S.M.S. Zaidi, Mir Jan Muhammad and S.M. Raza Zaidi — Application of Geological Principles in Urban Planning (Karachi a case study) 11
Abdul Wadood Qureshi and Mohammed Iqbal — Examination of Composite Tannery Effluent Collected from Korangi Tannery Area, Karachi 21
Muhammad Arshad Khan, Shahid Naseem and Ejaz Ahmed Khan — Ground Water Investigation in Bangrilla Town, Mirpur, Azad Kashmir 29
M. Ayub Khan Yousuf Zai — Investigation of Kinetic Residue for Nickel Ore Tailings Using Rate Method 41
Islamuddin and Masoodul Haq — Normality of Binomial and Poisson Distributions with Absolute Deviation 53
Abdur Rashid, Aleem Ahmed, G.R. Niaz, Fasihullah Khan, Altaf Khan and Nayeemuddin — Sewage Fat Recovery from Waste Water A Pilot Plant Study 69
M.S. Rizvi and Forzai Niaz — Some Studies on Thermo-Oxidative Degradation of Nylon-6 Fiber 77
Sayed M. Husaini, I.A.K. Afzidi, S. Asif Ali and Ejaz A. Khan — Studies on Thermal and Sulfurous Springs of Pakistan and Azad Kashmir 81

Biological Sciences Section
Nusrat Jamil, M. Furruckh Saeed and Nusrat Parween — A Study on Bacteriocinogeny in Bacillus Subtilis 93
Tasheem F. Razzaki, Ursula G.G. Hennig and R.C. Von Borstel — Assessment of the Ability of the Antithelmintic Drug Pyrvinium Pamoate to Promote Base-Pair Substitutions during In Vitro DNA Replication 109
Mah Talat Ansari, H.S.A. Athar and S.N. Hasnain — Biosynthesis of Corticosteroids by Adrenal Glands of Urnasaxest Hardwickii 125
M. Shahabuddin and E.M. Abdulla — Estimation of the Minimum Diagnostic Titre for Typhoid and Paratyphoid Fevers in Karachi 137
Talat Haider and Oscar Caceres — Evaluation of the Genetic Potential of Desi (Native) Chickens of Pakistan for Economic Traits, I. Body Weight, Feed Consumption and Mortality up to 20 Weeks in the Base Population 147
Najma Aftab and Rashida Qasim — Geographic and Monthly Variations in the Biochemical Contents of Oysters: Crassostrea Rivalaris 159
Aliya Sami, Shahana Urqeq Kazmi, Mohammad Shahid and Shafi Quraishy — Helicobacter Pylori Infection in Pakistani Patients with Gastroduodenal Pathology 171
Nuzhat Ahmed, Afshan Afzal and Obaid Yusuf Khan — Involvement of Plasmid in the Biosynthesis of Exopolysaccharide by Klebsiella Pneumoniae 181
Rashda Ali, Naheed Sultana, S. Asad Sayed and S. Hasni — Nutritive Value of Protein Isolate from Uva Fasciata 189
Abdul Farid Khan — Occurrence of Bacillus Thuringiensis (Berliner) in Sericultural Soil in Pakistan 197
Kehkashan Perveen, Naheed Akhtar, Iqbal M. Kidwai and M.A. Haleem — Potential Energy Calculations of Metyrapone 201
Raees Begum, R. Arshad, Nasreen M. Qureshi and Masood A. Qureshi — Preliminary Study on Spemmicidal Activity of Calotropis Procera Extracts 207