Proceedings of International Bhurban Conference
on Applied Sciences & Technology

Volume 1
Edited by: Hafeez R. Hoorani, Arshad Munir, Raza Samar, Salimuddin Zahir

National Centre for Physics
Quaid-i-Azam University Campus
Islamabad, Pakistan
TABLE OF CONTENTS

Introduction

ADVANCED MATERIALS

Microstructure and Properties of Metal-Matrix Composites (MMC) for Automotive Applications
Fazal A. Khalid
1

Electro-Chronic Materials and Devices
Ruwan Hussain
4

Composites for Aerospace Applications
Dr. M. Zia-ul-Zaman
8

High Performance Fiber Reinforced Composites (Processing and Fabricating Techniques)
Naveed A. Siddqui
16

COMPUTATIONAL FLUID DYNAMICS (CFD)

Introduction to Non-Linear Finite Element Analysis
Dr. Abdul Fazal M. Arif
23

Formation of Counter-Rotating Vortices with Sheared Ion-Flows in the Earth's Auroral F-Region of the Plasma
Arshad M. Mirza, P.K. Shukla, T. Farid and G. Murtaza
52

Computational Study of a Blunt Cylinder Flare Body in High Super-Sonic Flow Using CFD
A. Jabbar, I. Afgan, M. Arshad, S. Zahir
63

Cone-Cylinder Separation Analysis in Hypersonic Flow
R.A. Khurram, Nasir Kamran and S. Zahir
80

Solid Rocket Motor Plume Analysis and its Applications
S. Bilal H. Bukhari, S. Zahir, I. Jehan and M. Hanif
92

Growth of Computational Aerodynamics in Pakistan
S. Zahir
102

Fortran Code to Generate Multi-Block Algebraic Grids on and Around a Nose-Cone-Cylinder-Flare (NCCF) Configurations of Single Stage and Multistage Bodies
S. Zahir, Nadeem A. Javed, Aamina Mubarak
110

Aerodynamic Force Estimation on a Jet Vane Exposed to an Internal Flow of a CD-Nozzle Exhaust
I. Jehan, S. Bilal H. Bukhari and S. Zahir
130

Performance Benchmark of Some CFD Applications on PC and Parallel Processing Machine
M. Asad, B. Zahid, S. Zahir
134

Steady Navier-Stokes Simulations of Supersonic Flow Field over a Three-Dimensional Cavity
S. Zahir, Nadeem A. Javed, Sohaib Aziz
138
Comparison of Convective and Radiative Heat Fluxes for the Stagnation Region of Hemisphere in Hypersonic Flow
M. Hanif, S. Zahir

Estimation and Validation of Aerodynamic Hinge-Moments and Shaft-Hinge Line Location for a Trapezoidal Control Surface Panel in Subsonic Flow
Imran Afgan, Abdullah Malik, S. Zahir

CFD Predictions of Axial Pressure Distribution and Flow Structure of Water and Air around Hemisphere Cylinder Configuration at Intermediate to High Reynolds Numbers and at Various Incidence Angles
S. Sahir, M. Zahid Bashir and Rafi-ud-Din

A Study of Separation Control on a Thick Airfoil by Varying Mems Parameters
Ajmal Baig, Salimuddin Zahir and Hossein Hamdani

CONTROL ENGINEERING

Incompleteness of Cross-Product Steering and a Mathematical Formulation of Extended-Cross-Product Steering
S.A. Kamal

Dot-Product Steering, A New Control Law for Satellites and Spacecrafts
S.A. Kamal

Soft Computing Based Modeling and Control Systems
M.M. Awais

Internal Model Control-Systems for Large Scale Industrial Problems
M.M. Awais

Model Reduction Techniques for Large Scale Unstable Systems by the Implicit Restart Scheme
Nisar Ahmed, M. Mansoor Ahmed and Mian M. Awais

Lyapunov Stability Theory
Kamran Iqbal

Review of Fault Detection Techniques
N. Lehrasab

Review of Fault Isolation Techniques
N. Lehrasab

FPGA-based ASIC Design Using Verilog HDL
Dr. Nasir D. Gohar
Dot-Product Steering
A New Control Law for Satellites and Spacecrafts

Syed Arif Kamal
Departments of Mathematics and Computer Science
University of Karachi
Karachi, Pakistan.

Abstract

A control law is formulated, which employs dot products of velocity and time rate of change of velocity. Mathematical representation using elliptic-astrodynamical-coördinate mesh is presented.

Introduction

The normal-component-cross-product steering control law [1] put forward in the other paper may be used to derive another law, which can be used to derive normal components of velocity to zero. This law, termed as, dot-product steering, is further developed into another control law, ellipse-orientation steering, and conditions are derived to determine and, eventually, eliminate down-range and cross-range errors. This paper is a continuation of [1], and, hence, the list of symbols, compact notations and coördinate systems collected in the Nomenclature section applies to calculations presented in this paper, as well.

A good overview of orbital dynamics, needed to understand these calculations, may be found in [2]. The elliptic-cylindrical-coördinate mesh [3, 4] is adapted to deal with the
bounded keplarian orbits, as elliptic-astrodynamical-coördinate mesh. References [3, 4] illustrate another adaptation of these coördinates — the cardiac-coördinate mesh, which is used to model surface anatomy of the human heart.

In this paper mathematical formulations of dot-product steering, normal-component-dot-product steering (as the special case of dot-product steering) and ellipse-orientation steering are presented. In Appendix A, trajectory computed under the assumption of constant g (parabola) is shown to be the limiting case of elliptical trajectory, when its semi-minor axis, \(b \), is very small as compared to its semi-major axis, \(a \). In Appendix B, equation of ellipse written in the form,

\[
r = \frac{p}{1 + e \cos f}; \quad 0 \leq f \leq 180^0
\]

is shown to be equivalent to the form, traditionally, recognized:

\[
\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1
\]

Dot-Product Steering

Dot-product steering is a control law, which involves dot products of the vector, and its time rate of change. In order to derive a vector \(\mathbf{A} \) to zero, one needs to derive the factor \(|\mathbf{A}| \frac{d\mathbf{A}}{dt} (1 + \cos \theta) \) to zero, where \(\theta \) is the angle between \(\mathbf{A} \) and \(\frac{d\mathbf{A}}{dt} \). In other words

\[
\mathbf{A} \cdot \frac{d\mathbf{A}}{dt} + |\mathbf{A}| \left| \frac{d\mathbf{A}}{dt} \right| \to 0
\]

(1)

In the trajectory problems, it is customary to require the normal component of velocity to vanish. Hence, one may develop a special case of *dot-product steering*.

Normal-Component-Dot-Product Steering

In order to bring a vehicle to the desired trajectory one needs to derive the factor \(|\mathbf{v}_{\text{perp}}| \frac{d\mathbf{v}_{\text{perp}}}{dt} (1 + \cos \phi) \) to zero, where \(\phi \) is the angle between \(\mathbf{v}_{\text{perp}} \) and \(\frac{d\mathbf{v}_{\text{perp}}}{dt} \). The above condition may be expressed, mathematically, as

\[
\mathbf{v}_{\text{perp}} \cdot \frac{d\mathbf{v}_{\text{perp}}}{dt} + |\mathbf{v}_{\text{perp}}| \left| \frac{d\mathbf{v}_{\text{perp}}}{dt} \right| \to 0
\]

(2)

Proof: From *normal-component-cross-product steering*, the condition to drive a vector to zero is vanishing of the product

\[
\mathbf{v}_{\text{perp}} \times \frac{d\mathbf{v}_{\text{perp}}}{dt}
\]
This means that the direction of v_{\perp} may not change. However, its magnitude should change. The vector v_{\perp} should go to zero if $\frac{dv_{\perp}}{dt} < 0$. This is possible only if $\frac{dv_{\perp}}{dt}$ makes an angle of 180° with v_{\perp}, that is

$$\frac{v_{\perp} \cdot \frac{dv_{\perp}}{dt}}{\frac{dv_{\perp}}{dt}} = \cos 180° = -1$$

which reduces to

$$v_{\perp} \cdot \frac{dv_{\perp}}{dt} + |v_{\perp}| \left| \frac{dv_{\perp}}{dt} \right| = 0$$

This completes the proof of normal-component-dot-product steering.

Examples: Examples of rectilinear, circular and elliptical trajectories are worked out to illustrate this control law.

a) Straight Line: To simplify the calculations, x axis is chosen along the trajectory.

$$v_{\text{para}} = v_{\text{x}} = v_{x}\hat{e}_x, \quad v_{\text{perp}} = v_{\text{y}} + v_{\text{z}} = v_{y}\hat{e}_y + v_{z}\hat{e}_z.$$ The conditions for normal-component-dot-product steering become

$$v_{y} \left| \frac{dv_{y}}{dt} \right| \to 0; \quad v_{z} \left| \frac{dv_{z}}{dt} \right| \to 0$$

b) Circle: xy plane is chosen so that the circular trajectory lies entirely in it, with center of circle coinciding with the origin of the coördinate system. In cylindrical-coördinate mesh, (ρ, ϕ, z), the components of velocity are $v_{\text{para}} = v_{\phi} = v_{\phi}\hat{e}_{\phi}$,

$$v_{\text{perp}} = v_{\rho} + v_{z} = v_{\rho}\hat{e}_{\rho} + v_{z}\hat{e}_z.$$ Therefore, normal-component-dot-product-steering law takes the form

$$v_{\rho} \left| \frac{dv_{\rho}}{dt} \right| \to 0; \quad v_{z} \left| \frac{dv_{z}}{dt} \right| \to 0$$

c) Ellipse: In order to write this condition for elliptic-astrodynamical-coördinate mesh, one notes that $v_{\text{para}} = v_{\xi} = v_{\xi}\hat{e}_{\xi}$, $v_{\text{perp}} = v_{\zeta} + v_{z} = v_{\zeta}\hat{e}_{\zeta} + v_{z}\hat{e}_z$. One notes that, $v_{\rho} = v_{\xi} = v_{\xi}\hat{e}_{\xi}$ shall contribute to down-range error and $v_{N} = v_{z} = v_{z}\hat{e}_z$ to cross-range error. Therefore, the steering law may be expressed as

$$v_{\zeta} \left| \frac{dv_{\zeta}}{dt} \right| \to 0, \quad v_{z} \left| \frac{dv_{z}}{dt} \right| \to 0$$
Ellipse-Orientation Steering

The condition for no down-range error is

\[(4a) \quad (\hat{a}_{\text{para}} \cdot \mathbf{r} + ae)(\hat{a}_{\text{para}} \cdot \mathbf{v})(e^2 - 1) = (\hat{a}_{\text{perp}} \cdot \mathbf{r})(\hat{a}_{\text{perp}} \cdot \mathbf{v})\]

and the condition for no cross-range error is

\[(4b) \quad \hat{a}_N \cdot \mathbf{v} = 0\]

These equations describe another control law, termed as *ellipse-orientation steering*.

Proof: Expressing \(v_\xi\) in terms of \(v_x\) and \(v_y\)

\[v_\xi = v_x \sinh(ae\xi) \cos E + v_y \cosh(ae\xi) \sin E\]

and substituting the values of

\[\sinh(ae\xi) = \frac{y}{ae \sin E}, \quad \cosh(ae\xi) = \frac{x + ae}{ae \cos E}, \quad E = \tan^{-1} \frac{y}{x + ae}\]

one gets, for no down-range error

\[v_\xi = \frac{v_x (x + ae) + yv_y}{ae} \rightarrow 0\]

which can be, immediately, generalized to (4a). Similarly, for no cross-range error, \(v_\xi \rightarrow 0\), which is generalized to (4b).

Cross-Range Error Detection

For no cross-range error velocity of the spacecraft must lie in the plane containing \(\mathbf{r} \times \mathbf{r}_2\). In other words

\[(5) \quad \mathbf{v} \cdot \mathbf{r} \times \mathbf{r}_2 = 0\]

In order to detect cross-range error present, \(v_\xi\) is first expressed in terms of \(x, y, z\) (body-coordinate mesh), and then in terms of inertial system to be able to obtain a condition to eliminate down-range error. Similarly, \(v_\xi\) is expressed in terms of inertial-coordinate mesh so that conditions may be obtained to eliminate cross-range error.

Down-Range Error and Cross-Range Error Elimination

To eliminate down-range error, the following condition should hold

\[(6a) \quad \frac{v_x}{v_y} \propto \tan E\]

and to eliminate cross-range error
Dot-Product Steering

\[(6b) \quad v_z = 0\]

This can be easily proved using the expressions for \(v_\xi, v_E\) and Eq. (5).

Conclusions

Normal-component-dot-product steering, involves, dot products of normal component of velocity and its time rate of change. It is derived from *extended-cross-product steering*. The formulation presented in [1] and this paper may be useful in satellite dynamics. Using this formulation a satellite-launch vehicle (SLV) may be constructed, which can inject satellites into the desired orbits. Suitable autopilots may be designed for attitude control of the satellites.

It is imperative to develop similar formulations for parabolic and hyperbolic orbits, and compare the results to this formulation.

Acknowledgements

The author would like to express his heartfelt thanks to National Center for Physics, in particular, the Organizing Committee of IBCAST for making my stay at Bhurban enjoyable. This work was made possible, in part, by Dean's Research Grant awarded by University of Karachi.

Appendix A: Equivalence of a Projectile Trajectory in Constant Gravity (Parabola) and a Trajectory Computed From Kepler's Equation (Ellipse)

A projectile is a freely falling body. Its trajectory, as determined in elementary physics under the assumption of constant gravity, comes out to be a parabola in free space. The projectile is bound to the earth's gravitational field and, therefore, comes back to the surface of earth. Table 1 shows that the trajectory of a bound projectile (the potential energy larger than the kinetic energy) must be either an ellipse or a circle. A parabolic

<table>
<thead>
<tr>
<th>Energy ((E))</th>
<th>Eccentricity ((e))</th>
<th>Shape of the Orbit</th>
<th>Type of the Orbit</th>
<th>System ((Bound/Free))</th>
<th>Number of Turning Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E < E_{\text{min}})</td>
<td>(e < 0)</td>
<td>Not allowed</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(E = E_{\text{min}})</td>
<td>(e = 0)</td>
<td>Circle</td>
<td>Closed</td>
<td>Bound</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(E_{\text{min}} < E < 0)</td>
<td>(0 < e < 1)</td>
<td>Ellipse</td>
<td>Closed</td>
<td>Bound</td>
<td>2</td>
</tr>
<tr>
<td>(E = 0)</td>
<td>(e = 1)</td>
<td>Parabola</td>
<td>Open</td>
<td>Free</td>
<td>1</td>
</tr>
<tr>
<td>(E > 0)</td>
<td>(e > 1)</td>
<td>Hyperbola</td>
<td>Open</td>
<td>Free</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2. Features of Orbits

<table>
<thead>
<tr>
<th>Energy (\mathcal{E})</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{E} < \mathcal{E}_{\text{min}}$</td>
<td>$\mathcal{E}{\text{min}} = V(\frac{r}{r{\text{min}}})$</td>
</tr>
<tr>
<td>$\mathcal{E} = \mathcal{E}_{\text{min}}$</td>
<td>$\dot{r} = 0$ everywhere, and $r = \text{constant}$</td>
</tr>
<tr>
<td>$\mathcal{E}_{\text{min}} < \mathcal{E} < 0$</td>
<td>$r_{\text{min}} = \text{pericenter}, r_{\text{max}} = \text{apocenter}$, which are the turning points</td>
</tr>
<tr>
<td>$\mathcal{E} = 0$</td>
<td>r_{min} is the turning point</td>
</tr>
<tr>
<td>$\mathcal{E} > 0$</td>
<td>r_{min} is the turning point</td>
</tr>
</tbody>
</table>

An orbit is possible only when total energy of the projectile is zero. In other words, the potential energy must be numerically equal to the kinetic energy (they have opposite signs). If this condition is satisfied at the surface of earth for a vertical lunch, velocity of the projectile becomes equal to the escape velocity to get out of the earth's gravitational field.

This contradiction may be resolved if one looks at the parabolic trajectory as the limiting case of an elliptical trajectory — the semi-major axis being very large as compared to the semi-minor axis. In this case the eccentricity, e, shall approach unity. Mathematically,

$$b^2 = a^2(1-e^2) \Rightarrow e = \sqrt{1 - \frac{b^2}{a^2}}$$

which gives,

$$\lim_{a \to \infty} e = \lim_{a \to \infty} \sqrt{1 - \frac{b^2}{a^2}} = 1$$

In fact, this is, exactly, what happens in the case of constant g. The assumption of constant g (acceleration due to gravity) implies that the range is very small as compared to the circumference of earth (altitude is small). Since one of the foci lies at the center of earth the semi-major axis is of the order of radius of earth. The semi-minor axis, however, is of the order of range. Therefore, parabolic trajectory is, actually, the limiting case of elliptical trajectory.

It is interesting to note that for a bound system the number of turning points is greater than one, the energy is negative and the orbit is closed. Table 2 list some features of orbits.

Appendix B: Equivalence of Ellipse Equations

An equation of ellipse in the cartesian-coördinate mesh with center at (h, k)

$$(B1) \quad \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

is shown to be equivalent to an equation of ellipse in polar coördinates:
To do so one notes that (B2) refers to an ellipse with origin at one of the foci. The coordinates of center must, therefore, be taken as \((-ae, 0)\) in (B1), that is \(h = -ae\) and \(k = 0\). The semi-major axis, \(a\), and the semi-minor axis, \(b\), are related by \(b^2 = a^2(1-c^2)\). Therefore, perimeter of the orbit (semi latus-rectum of the ellipse), \(p\), may be found by noting that it is the value of \(r\), when \(f = 90^0\) (or, the value of \(y\), when \(x = 0\)). Substituting, \(x = 0, y = p\), in (B1) and rearranging, one gets

\[
p = a(1 - e^2)
\]

Substituting, \(b^2 = a^2(1-e^2), \ x = r\cos f, \ y = r\sin f, \ h = -ae, \ k = 0, \) in (B1), and using (B3), one obtains a quadratic equation:

\[
(1 - e^2 \cos^2 f) r^2 + (2ep \cos f) r - p^2 = 0
\]

whose roots are

\[
r_1 = -\frac{p}{1 - e \cos f}, r_2 = \frac{p}{1 + e \cos f}
\]

The solution \(r_1\) is unphysical because it gives negative values of \(r\) (\(r\), being the radius vector, is always positive). The solution \(r_2\) is the required form.

References

Web address of this document (author’s homepage): https://www.ngds-ku.org/Papers/C55.pdf

Abstract: https://www.ngds-ku.org/pub/confabst.htm#C55
Contact us
Scientific Secretary IBCAST,
National Center for Physics,
Quaid-i-Azam University Campus, Islamabad-Pakistan
e-mail: info@ibcast.org.pk, secretary@ibcast.org.pk