Surface Topography and Body Deformity

Proceedings of the 5th International Symposium
September 29 – October 1, 1988 Wien

Edited by
Hermann Neugebauer and Gerhard Windischbauer

4 colour-plates, 191 figures and 26 tables

Gustav Fischer Verlag · Stuttgart · New York · 1990
Contents

Preface and acknowledgements ... IX
Contributors and addresses ... XIII
Colour-plates ... XIX

Introductory papers

Hermann Neugebauer (Wien)
Moiré-techniques in the art of making and in identifying antique master violins 3

Gerhard Windischbauer (Wien)
Introduction to optical diagnostic imaging of surface topography and body deformity 11

Part I: Nonoptical methods for acquisition and representation of spinal deformity and surface topography

School screening for scoliosis - The multiple ATI system of back shape appraisal using the Scoliometer with observations on the sagittal declive angle 17

A.S. Wojcik, R.G. Burwell, J.K. Webb, A. Moulton (Nottingham)
A new ultrasound method for measuring spinal torsion in scoliosis 25

C.P. Oates, T.A. Whittingham, M.A. Leonard (Newcastle Upon Tyne)
The Newcastle ultrasonic spine imaging system ... 31

Z. Dvir, A. Berger, O. Gold, A. Libman, D. Levine (Tel-Aviv)
Tauss - a device for 3-D measurement of the spine and other anatomical structures 35

Z. Dvir, L. Copeliovitch (Tel-Aviv)
The effect of Hamstrings lengthening and lumbar lordosis in CP children 39

Part II: Optical methods in clinical studies and orthopaedic applications

H. Neugebauer, G. Windischbauer (Wien)
School-screening using moiré-technique .. 45
K. Steinnocher, J. Jansa, W. Kausel (Wien)
Recognition of scoliosis by automated evaluation of digital moiré images .. 115

Part III: Optical measurement techniques

B. Gallup, C. Cotton, N. Shewchenko, S. Filoso, D. Hidson (Ottawa)
Evaluation of 3-D human shape monitoring techniques ... 119

D. Hidson, N. Shewchenko, P. Boulanger, J. Newman, B. Gallup (Ottawa)
Experimentation in the averaging and manufacturing of human body shape data 127

R. Bertagnoli, W. Firbas, G. Windischbauer (Wien)
Optimum shape design of the Dens-transfixationplate by moiré-contouring and statistical analysis 135

P. Klein, M. Rooze, F. De Schryver (Brussels)
Determination of the 3-D geometry of the posterior articular surface of 48 calcaneums by close range moiré topography .. 139

G.E. Karras (Athens)
Calibration and accuracy of shadow-moiré topography ... 143

P. Klein, M. Rooze (Brussels)
Close range moiré topography: An error analysis ... 147

S.A. Kamal (Karachi)
Reproducibility of moiré topographs .. 151

W. Frobin, E. Hierholzer (Münster)
Video rasterstereolography, a method for on-line surface measurement ... 155

M. Brunet (Labège)
The V3D 1/800/Medical videolaser system: A body digitizer .. 159

Part IV: Visualization and 3D-representation of the human body

E. Wintermantel (Zürich)
Medullary space topography with highest regional precision and preoperative visualization of CAM-made individual implants ... 165

U. Kliegis, W. Schwesig, H. Weigel, R. Mittelstädt, Th. Kortmann, W. Zenker (Kiel)
Organ models for surgery planning ... 169

W. Zenker, F. Brix, J.Th. Lambrecht (Kiel)
Dreidimensionale Weiterverarbeitung von CT-Daten zur Operationsplanung 173
Reproducibility of moiré topographs

Syed Arif Kamal
Department of Physics, University of Karachi, Karachi-75270, Pakistan

Abstract
This paper examines the issues regarding the reproducibility of moiré topographs and outlines the need for an objective criterion for reproducibility. A criterion is proposed to obtain reproducible moiré pictures. An experiment is designed to test this criterion.

1. Introduction

Moiré fringe topography has proved to be extremely useful in the diagnosis and documentation of scoliosis. It is also being applied in the evaluation of anterior chest wall deformity. The power of this technique lies in the fact that it is simple, inexpensive, noninvasive and does not use any ionizing radiation. In addition the technique provides a map of three-dimensional surfaces by generating contours which are curves of constant height. Unlike contouring with holographic techniques, stability is not required. In addition, the resolution of moiré contouring systems can be varied continuously.

The technique of moiré topography consists of photographing the part of the body to be studied through a specially constructed screen. Dark fringes are produced on the body because of the presence of the screen. The study of these fringes gives valuable information about skeletal deformities.

2. Description of the problem

Moiré topography is being applied in the evaluation of spinal deformities for more than eight years. Adair, van Wijk and Armstrong (1977) felt that the few positive cases in their pilot screening program for scoliosis, which were missed by the moiré technique were due to the fact that some children were not properly aligned or had to be rotated by the shoulders to obtain the required orientation. Moiré technique is also being applied for the follow-up of scoliosis patients. If the moiré topographs are to be compared at subsequent intervals, then there must be some reference point. Shochat and Csongradi (1983) used moiré technique in the evaluation of anterior chest wall deformity. They placed the patient behind the screen facing the camera with the abdomen in contact with the screen. This technique provided a central fringe which was used as a reference point. However, during therapy and surgery for pigeon chest the shape of the abdomen is not guaranteed to be the same as the initial one. Hence this technique is not reliable. There is another consideration when positioning of the patient is done for the study of posture and spinal deformities. If one tries to obtain any type of reproducible position, one is immediately distorting the condition one is trying to examine, particularly if one tries to rotate the trunk on the pelvis. Even the positioning of feet tends to rotate one hip to a mild degree as observed in small curves.

During recent years there has been considerable concern over the accuracy and repeatability of moiré topographs (Csongradi, Jefferson, Turner-Smith and Harris, 1987; Bannon and Tredwell, 1987; Jones, Scull, Dutton, White, Slinger and O'Connor, 1987).

3. Attempts to position the patient and the moiré apparatus

My group used a special lamp and scale arrangement to position the patients in some of the earlier studies (Kamal, 1982). Two laser beams were used to align the patient vertically and horizontally. A mirror was attached to the patient's sides using two plastic strips. The proce-
\[(3a) \quad S\psi = \text{Sum} (\psi - <\psi>)^2/(N - 1)^{1/2}\]
\[(3b) \quad S\chi = \text{Sum} (\chi - <\chi>)^2/(N - 1)^{1/2}\]

The maximum of these deviations is then recorded
\[(4) \quad S = \max(S\psi, S\chi)\]

The method proposed will be considered reliable if \(S < 0.05\). In order to find a standard for reproducibility on moiré topograph avoiding the area being studied, it is proposed that symmetric fringes on the knees be considered as reference provided the patient does not have any leg deformity. In many cases of skeletal deformities, however, this is not the case. If the fists of the hands are taken as reference, they will be relatively independent of the skeleton. However, since the fists can be rotated easily, a standard plane is needed. Fig. 2 shows a pair of stands which the child can hold in his palms and thus fixing the position of fists. This positioning will not significantly effect the posture. The child will be asked to stand relaxed looking straight ahead on some fixed point on the wall. Symmetric fringes on the front and back sides of the fists can be used for positioning the camera for the study of chest as well as back.

5. Materials and methods

A shadow moiré apparatus is being used to conduct the study. The specifications of the moiré set up are described elsewhere (Kamal et al. 1988). For the criterion to have statistical validity hundred normal healthy boys of class seven are requested to participate in the photographing process. The children are marked on the back using a skin marker and photographed with their shoes and stockings off as recommended by Free (1974). Two photographs of the back are taken by the same person to determine the reliability of the procedure. The angles are measured on all the photographs. In the end factor \(S\) will be calculated.

6. Conclusion and discussion

If the factor \(S\) comes out to be less than 0.05, the criterion could be applicable. Further work in reproducibility could be done to study the stability based on fist as well as knee positioning for front photographs. Objectivity studies could also be done for both fist and knee positioning to compare the results of different observers.

7. References

Acknowledgements

The author would like to thank Nasiruddin Bukhari, Muhammad Akram and the authorities of Government Comprehensive High School, Korangi No.3, Karachi for their help in conducting the study.
Spinal deformities, especially scoliosis, are a severe problem of the young people. The challenge is to prevent surgical intervention by non-invasive screening programs for early diagnosis, to follow-up the effects of treatment and to predict the course of scoliosis. Optical, acoustical and mechanical techniques have been developed to meet this challenge and to minimize the risk of frequent X-raying. Since 1980 an international group of clinicians, engineers and scientists has met bi-annually to share techniques, results and data on body surface shape and spinal deformities. Digital image processing is providing better means for the three-dimensional description and visualization of the human body. Therefore contributions on surgical planning, implant shaping and reconstructive surgery are included to represent the current state of 3D-medical imaging and visualization in this book.