

ڪُرَاچِيُ يُونِيوَرَّشِيْ University of Karachi

Department of Mathematical Sciences PHY 509 • Methods of Mathematical Physics I

Time Allowed: 3 hours • Maximum	Marks: 80 • Date: Saturday, June 9, 2012 • Paper Format: A
Student's Name	(in CAPITAL LETTERS using a "marker")

Questions 1-4 constitute the terminal and **5-7** midterm. Each part of **Question 1** is of 4 marks. **Questions 2-7** are of 10 marks each. Note down the time spent on solving each part of question and time spent on revision by making the following "Time Chart" on the answerbook front page (2 marks). Time spent on revision must be at least 10% of the total time.

Question No.	1a	1b	1c	1d	2	3	4	5	6	7	Revision
Time (minutes)											

- a) DO NOT TURN PAPER AROUND unless the invigilator says: Start now
- b) This is a closed-book examination. Deposit all BOOKS, NOTES, MOBILE PHONES (switched off), DIGITAL DIARIES and LAPTOPS in the designated area. Remove everything from your desk, except markers, pens, pencils, stapler and calculator.
- c) If you want to use a calculator, it must bear a "sticker" displaying your NAME and your SEAT NUMBER, large enough so that it is visible from a distance of 5 meters. Absolutely, NO sharing of calculators.
- d) Use your own material. **Nothing can be borrowed from or given to** a friend.
- *e)* The papers may be of different formats. Therefore, work on your own *without consulting anyone* (We have a record of your seating arrangement).
- f) Write your "NAME" on all pages of your question paper (5 marks shall be deducted for failing to comply) [NOTHING ELSE SHOULD BE WRITTEN ON THE QUESTION PAPER] and "PAPER FORMAT" on the front page of your answerbook (the upper-right-hand corner) and the Yellow Sheet using a "marker". Start your work from Page 2 of your answerbook. The only thing that could be written on the front page is the "Time Chart" (see above) and the "Honor Statement" (see below).
- g) The following statement must be copied on the front page of your answerbook and signed (2 marks): "My signatures, below, testify that I am the person, whose name and photograph appear on the Admit Card. Upon my honor, I declare that the following work is my own, completed without giving or receiving unacknowledged help, without copying, or the use of any unfair means." Signatures_____
- h) This paper contains TWO PAGES (this page and the back page). On invigilator's signal (*Start now*) turn the paper around, check if you have the back page printed, correctly. Last line of the second

- page reads: **<END>**. Start working on the paper, immediately.
- *i)* Put your pens down and your papers turned (so that this page is facing you) and the FRONT PAGE of your answerbook should be facing you as soon as you hear "**ALL PENS DOWN**". Failure to do as directed shall result in "deduction of 5 marks" from your score.
- *j)* If you use extra copies, it is "**your responsibility**" to write YOUR NAME, COPY NUMBER and all OTHER INFORMATION on each copy used. All the extra copies must be stapled with the main copy, before turning in your paper (you may wish to bring in a stapler with you for this purpose).
- *k)* If you have a question of "Fill in the blanks" in your paper you must write the complete sentence with the filled word underlined.
- *l)* Nobody is allowed to leave the examination hall, **for whatsoever reason**, once the examination has started. Bring your own DRINKING WATER.
- *m)* Students are not allowed to LEAVE THEIR SEATS or STAND UP during the examination. If you have a query, "raise your hand" and someone will help you.
- *n)* All work, including rough work, must be on the official answerbook. No extra sheet may be used.
- *o)* Students are *not* allowed to use RED anywhere. All work (except figures) must be in pen or ballpoint.
- p) The result shall be displayed on my homepage on **Saturday**, **July 7**, **2012** at **0900h**. DO NOT contact the Course Supervisor. Students are not permitted to see the answerbooks.
- q) Anyone found cheating in the examination should be facing disciplinary action, which may result in **EXPLUSION** or **SUSPENSION** for 2 or more years as per University of Karachi rules. **Absolutely, no conversation among students. DON'T TURN THE PAPER, YET.** Wait for "signal" from the invigilator.

Homepage: http://ngds.uok.edu.pk/kamal *e-mail*: sakamal(at the rate of)uok.edu.pk

(in CAPITAL LETTERS using a "marker") Student's Name_

TERMINAL

- 1-a) What is value of the angle between a unit vector and the corresponding coördinate curve? In case of electric intensity, which one corresponds to equipotential surface and which one corresponds to line of force?
- Describe the coördinate surfaces and the coördinate curves for the spherical-polar-coördinate mesh.
- 1-c) List any 4 of the 5 types of coördinate transformations discussed in class.
- 1-d) Draw the following table in your answerbook and fill in the blanks:

Spacetime Symmetry	Mathematical Representation	Conserved Quantity
Space-translational symmetry (homogeneity)		
Rotational symmetry (isotropy)		
Time-translational symmetry (stationary)		

- Obtain the transformation matrix representing rotation about z axis through an angle q. Show that the set of transformation matrices, representing rotations about z axis, form an abelian group under the operation of matrix multiplication.
- For any two vectors \mathbf{A} and \mathbf{B} show that (μ is the angle between \mathbf{A} and \mathbf{B}): $|\mathbf{A} + \mathbf{B}|^2 = |\mathbf{A}|^2 + |\mathbf{B}|^2 + 2|\mathbf{A}||\mathbf{B}|\cos \mu$

$$|A + B|^2 = |A|^2 + |B|^2 + 2|A||B|\cos \mu$$

A vector field F can be found from the knowledge of sources of the field. What are these sources? In the following equation: $F = F(r) = -\nabla j + \nabla \times A$. State whether the derivatives in ∇ are evaluated with respect to the field point or the source point?

MIDTERM

Prove the following using ∈ iik notation as well as physical arguments and give one application of each:

(a)
$$\nabla \times (\nabla f) = 0$$
; (b) $\nabla \cdot \nabla \times A = 0$

- Express the vector field V(x, y) = x i + y j in plane-polar coördinates. Compute the divergence and the curl in planepolar coördinates. Is it a source field, a sink field or a rotation field (clockwise/counter-clockwise)? Confirm by drawing a graph.
- 7) Compute the scale factors for the cylindrical-coördinate mesh.

Web address of this document: http://www.ngds-ku.org/M509-10/Exams509-10/509-120_Paper.pdf (paper shall be uploaded 12 hours after the examination ends)

Exam paper solution: Saturday, July 7, 2012 at 1600h, i. e., 4: 00 p. m.,

Mathematical Sciences Room No. G8