
Proceedings of the Tenth National Aeronautical Conference, Edited by Sheikh SR, Khan AM, College of 

Aeronautical Engineering, PAF Academy, Risalpur, KP, Pakistan, April 21-22, 2006, pp 255-263 

 

 

 
*PhD; MA, Johns Hopkins, United States; MS, Indiana, Bloomington, United States; SSO, Control Systems 

Laboratories (1992-1995) and Consultant, Guidance, Navigation and Control Laboratories (2005), SUPARCO (Plant), 

Pakistan Space and Upper Atmosphere Research Commission;  Interdepartmental Faculty, Departments of Physics and 

Computer Science, Institute of Space and Planetary Astrophysics (ISPA), University of Karachi; Visiting Faculty, 

Department of Aeronautics and Astronautics, Institute of Space Technology, Islamabad • paper mail: Professor and 

Chairman, Department of Mathematics, PO Box 8423, University of Karachi, Karachi 75270, Pakistan • telephone: +92 21 

9926 1300-15 ext. 2293 • e-mail: profdrakamal@gmail.com • homepage: http://www.ngds-ku.org/kamal • Member AIAA 

 

  255 

Cross-Range Error in the Lambert Scheme 

 
Syed Arif Kamal* 

University of Karachi, Karachi, Pakistan 
 

——————————————————————————————————————— 
Abstract 
 

   The determination of an orbit, having a specified transfer time (time-of-flight) and connecting two position vectors, 

frequently referred to as the Lambert problem, is fundamental in astrodynamics. Of the many techniques existing for 

solving this two-body, two-point, time-constrained orbital boundary-value problem, Gauss' and Lagrange's methods are 

combined to obtain an elegant algorithm based on Battin's work. This algorithm includes detection of cross-range error. 

A variable TYPE, introduced in the transfer-time equation, is flipped, to generate the inverse-Lambert scheme. The 

Lambert scheme could be useful in steering a satellite-launch vehicle (SLV) as well as constructing the control system 

of a passenger craft traveling in a ballistic trajectory. 
 

Keywords: Lambert scheme, inverse-Lambert scheme, two-body problem, transfer-time equation, orbital boundary-

value problem 
 

 
Nomenclature  r 2 Radius vector of final destination 

  t Universal time 

a) Symbols (in alphabetical order)  t1 Launch time 

  t2 Time of reaching final destination 

 a Semi-major axis of the ellipse  TYPE Variable expressing direction of motion  

 am Semi-major axis of the minimum-   of spacecraft relative to earth’s rotation 

 energy orbit  v Velocity vector in the inertial coördinate  

 c Length of cord of the arc connecting    System 

 the points corresponding to radial   Product of universal constant of 

 coördinates r1 and r2   gravitation and sum of masses of 

 e Eccentricity of the ellipse   spacecraft and earth 

E Eccentric anomaly   Time of pericenter passage 

E1 Eccentric anomaly corresponding to the    Transfer angle 

 launch point   Angle of inclination of velocity vector  

E2 Eccentric anomaly corresponding to the    and normal to the plane 

 final destination    

   Astrodynamical terminologies and relationships 

are given in Appendices A and B, respectively. 

Appendix C contains a proof of the relationship 

connecting true and eccentric anomalies, providing 

a justification of positive sign in front of the 

radical. 

 

b) Compact Notations 

   In order to simplify the entries,  = 
21 e ,  = 

e

e





1

1
,  = G (m + M), are used in the expressions 

and equations. 

 f True anomaly  

G Universal constant of gravitation  

m Mass of spacecraft  

M Mass of earth  

n Unit vector, indicating normal to the   

 trajectory plane  

p Parameter of the orbit   

 Flight-path angle  

r Radial coordinate  

r1 Radial coördinate of launch point  

r2 Radial coördinate of final destination  

r Radius vector in the inertial coördinate   

 system  
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1. Introduction 

 

 Determination of trajectory is an important 

problem in astrodynamics. For a spacecraft 

moving under the influence of gravitational field 

of earth in free space (no air drag) the trajectory is 

an ellipse with the center of earth lying at one of 

the foci of the ellipse. This constitutes a standard 

two-body-central-force problem, which has been 

treated, in detail, in many standard textbooks [1, 

2]. The trick is to first reduce the problem to two 

dimensions by showing that the trajectory always 

lies in a plane perpendicular to the angular-

momentum vector. Then the problem is set up in 

plane-polar coordinates. Angular momentum is 

conserved and the problem, effectively, reduces to 

one-dimensional problem involving only the 

variable r [3]. 

 A problem famous in astrodynamics, called ―the 

Lambert Problem‖, is based on the Lambert 

theorem [4, 5]. According to this theorem the 

orbital-transfer time depends only upon the semi-

major axis, the sum of the distances of the initial 

and the final points of the arc from the center of 

force as well as length of the line segment joining 

these points. Based on this theorem a problem 

called the Lambert problem is formulated. This 

problem deals with determination of an orbit 

having a specified flight-time and connecting the 

two position vectors. Battin [6, 7] has set up the 

Lambert problem involving computation of a 

single hypergeometric function. Since transfer 

time (time-of-flight) computation is done on-

board, it is desirable to use an algorithm involving 

as few computation steps as possible. The use of 

polynomials instead of actual expression and 

reduction of the number of degrees of freedom 

contribute towards the same goal. 

 In this paper an elegant Lambert algorithm, 

presented by Battin, is scrutinized and 

omissions/oversights in his calculations pointed 

out. Battin’s formulation, which highlighted the 

main principles involved, was developed and 

expanded to present a set of formulae suitable for 

coding in the assembly language to be used as a 

practical scheme outside the atmosphere for 

steering the satellite-launch vehicle (SLV). These 

formulae may be used to compute the velocity and 

the flight-path angle required at any intermediate 

time to be compared with the initial velocity and 

flight-path angle of the spacecraft. A spacecraft 

cannot reach the desired location if cross-range 

error is present. Battin’s original work does not 

address this issue. In this paper a mathematical 

formulation is given to detect cross-range error. 

Algorithms   have   been   developed   and   tested,  

 which indicate cross-range error. In order to correct 

cross-range error velocity vector should be 

perpendicular to normal to the desired trajectory   

(i. e., the velocity must lie, entirely, in the desired 

trajectory plane). 

 A variable TYPE is introduced in the transfer-

time equation to incorporate direction of motion of 

the spacecraft. This variable can take on 2 values, 

+1 (for spacecrafts moving in the direction of 

rotation of earth) and –1 (for spacecrafts moving 

opposite to the direction of rotation of earth). In the 

inverse-Lambert scheme, TYPE is flipped, whereas 

all other parameters remain the same. 

 For an efficient trajectory choice, a 

transfer time close to minimum-energy orbital 

transfer time should be selected. The paper 

highlights a procedure for finding the minimum-

energy orbital transfer time. Additionally, formulae 

are given to compute the orbital para-meters in 

which the SLV must be locked in at a certain 

position, at a time, t, based on the Lambert scheme. 

 

 

2. Statement of the Problem 

 

 In order to choose a particular trajectory on 

which the spacecraft could be locked so as to reach 

a certain point one must select a certain parameter 

to fix this trajectory out of the many possible ones 

connecting the two points. The parameter to be 

chosen in the Lambert problem is transfer time, 

which is fixed between the two points. One is, 

therefore, interested to put the Kepler equation in 

such a form so as to make it computationally 

efficient utilizing hypergeometric functions or 

quadratic functions instead of circular functions 

(sine or cosine, etc.). This equation should express 

the transfer time between these two points in terms 

of a series or a polynomial, and another formula 

should be available to compute velocity vector 

(speed and flight-path angle), corresponding to this 

transfer time. Velocity desirable for a particular 

trajectory may, then, be computed on-board using 

this formula and compared with velocity of the 

spacecraft obtained from integration of acceleration 

information, which is available from on-board 

accelerometers and rate gyroscopes. 

 

 

3. The Lambert Theorem 

 

   In 1761 Johann Heinrich Lambert, using a 

geometrical argument, demonstrated that the time 

taken to traverse any arc (now called transfer time), 

12 tt  , is a function, only, of the major axis, a,  the 
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sum of radii vectors to the end of the specified 

arc, )( 21 rr  , and length of chord of the arc, c , 

for elliptical orbits, i. e., 
  

12 tt   = ),,( 21 acrrf    

  

The symbol, f, is used to express functional 

relationship in the above equation (do not confuse 

with true anomaly). Therefore, one notes that the 

transfer time does not depend on true or eccentric 

anomalies of the launch point or the final desti-

nation. Fig. 1 (page number 261) illustrates 

geometry of the problem. Mathematically, transfer 

time for an elliptical trajectory may be shown to 

be [6] 

)sin()sin()( 123



 tt

a
 

 

where, 
a

crr

42
sin 212 




, 
a

crr

42
sin 212 




. 

In our case, GMMmG  )( , because 

Mm . Based on this theorem a formulation to 

calculate transfer time and velocity vector at any 

instant during the boost phase is developed. This 

formulation is termed as the Lambert scheme. 

 

 

4. The Lambert Scheme 

 

 Suppose a particular elliptical trajectory is 

connecting the points P1 and P2. Let 1t and 2t be 

the times, when the spacecraft passes the points P1 

and P2, respectively, the radial coördinates being 

1r and 2r . The standard Kepler equation ( is time 

of pericenter passage) 

)sin()( 2/3 EeEat   (1) 

may be expressed as 

)cossin(2)( 23
12   att  (2) 

Where ),(
2

1
12 EE  ).(

2

1
coscos 12 EEe 

This equation may be used to calculate transfer 

time between 2 points by iterative procedure. 

However, it is unsuitable for on-board compu-

tation, because computing time is large owing to 

the presence of circular functions. In order to put 

this in a form involving power series, one 

introduces 

)(
2

1
2 21 crrsam   (3) 

2
cos21


rrs   (4) 

where ma  is the semi-major axis of the minimum-  

 energy orbit and the transfer angle. From the 

geometry, one has 

cos2 21
2
2

2
1 rrrrc   (5) 

)1(1 22 xy   (6) 

where ).(
2

1
cos  x Further, introducing 

xy   (7) 

)1(
2

1
1 xS   (8) 

and a Q function expressible in terms of a 

hypergeometric function 

);
2

5
;1,3(

3

4
1SFQ   (9) 

Transfer time may be expressed as 




 4)( 3
123

Qtt
am

 (10) 

This involves a hypergeometric function instead of 

a circular function, and hence it is easy to evaluate. 

The magnitude of velocity, v, and the flight-path 

angle, , may be evaluated using the expressions 

[4, 6] 

2
sin)](

2
[

1 2

1

22

1






 r

r
x

r

a

a
v m

m




  (11a) 

2
1

22

2

)cos1(
cos

vr

r 



  (11b) 

 The hypergeometric function in equation (9) is 

given by the continued-fraction expression (this 

expression is needed to reduce on-board computing 

time) 
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About 100 terms are needed to get an accuracy of 

10
-4

.  

 To compute the transfer time corresponding to 

the minimum energy orbit connecting the current 

position and the final destination one uses the 

transfer-time equation, with 0x , corresponding 

to maa  and solves it using Newton-Raphson 

method. Transfer time in the Lambert algorithm 

must be set close to this time. Fig. 2 (page number 

262) shows the flow chart of Lambert algorithm. 
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5. Cross-Range-Error Detection  

(Mathematical Model) 
 

  For no cross-range error, velocity of the space-

craft must lie in the plane containing 2rr  (the 

trajectory plane). In other words, the velocity 

vector must make an angle of 90
0
 with normal to 

the trajectory plane. This is equivalent to [8]  
  

0).( 2  rrv  (13) 

  

which says that v (current velocity), r (current 

position) and 2r  (position of destination) are co-

planar. For no cross-range error, the angle of 

inclination,  , between the velocity vector, v , 

and normal to the trajectory, ,n must be 90
0
. In the 

Lambert scheme a subroutine computes devi-ation 

of  from 90
0
. Extended-cross-product steering 

[9] and dot-product steering [10] could be used to 

eliminate cross-range error.  

 

 

6. The Inverse-Lambert Scheme 

 

  Transfer-time equation between two points 

having eccentric anomalies 1E and 2E , (correspon-

ding to times 1t and 2t , respectively) may be 

expressed as [11-13] 

 12 tt  

])][sin()sin[( 1122

3

TYPEEeEEeE
a




 (14) 

 The variable TYPE has to be introduced 

because the Kepler equation is derived on the 

assumption that t increases with the increase in f. 

Therefore, the difference 
  

)]sin()sin[( 1122 EeEEeE    

  

shall come out to be negative for spacecrafts 

orbiting in a sense opposite to rotation of earth. 

The variable TYPE ensures that the transfer time 

(which is the physical time) remains positive in all 

situations by adapting the convention that TYPE = 

+1 for spacecrafts moving in the direction of 

earth’s rotation, whereas, TYPE = –1 for space-

crafts moving opposite to the direction of earth’s 

rotation. This becomes important in computing 

correct flight-path angles in Lambert scheme. 

    If one wants to put another spacecraft in the 

same orbit as the original spacecraft, but moving 

in the opposite   direction,   one   can   use   the   

inverse-Lambert  scheme.  This  can   be  accomp-  

lished by flipping sign of the variable, TYPE , 

whereas all the other parameters remain the same. 

Burns and Sherock [14]
 
try to accomplish the same 

objective by a three-degree-of-freedom interceptor 

simula-tion designed to rendezvous with a ballistic 

target: position and velocity matching, no flipping 

of TYPE. The strategy presented in this paper is 

simpler: orbit matching, flipping of TYPE. The 

inverse-Q system has, also, been proposed by the 

author to accomplish the same objective  [15]. Do 

not confuse Q system with the symbol Q 

introduced in eq. (9). 

 

 

7. Conclusions 

 

  The Lambert scheme is applicable in free space, 

in the absence of atmospheric drags, for burnout 

times large as compared to on-board computation 

time (for example, if the burnout time for a given 

flight is 18 second and the computation time is 1 

second, there may not be enough time to utilize this 

scheme). This is needed to allow sufficient time for 

the control decisions to be taken and implemented 

before the rocket runs out of fuel. Detection of 

cross-range error is incorporated in this 

formulation. It is assumed that rocket is fired in the 

vertical position so as to get out of the atmosphere 

with minimum expenditure of fuel. Later, in free 

space this scheme is applied to correct the path of 

rocket. Since the rocket remains in free space for 

most of the time, this method may be useful in 

calculating the desired trajectory. 

  The Lambert scheme is an explicit scheme, 

which generates a suitable trajectory under the 

influence of an inverse-square-central-force law 

(gravitational field of earth) provided one knows 

the latitudes and the longitudes of launch point and 

of destination as well as the transfer time (time 

spent by the spacecraft to reach destination).  
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Appendix A: Astrodynamical Terminologies 

 

 Down-range error is the error in the range 

assuming that the vehicle is in the correct plane; 

cross-range error is the offset of the trajectory from 

the desired plane. An unwanted pitch movement   

shall produce down-range error; an  unwanted  yaw 
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movement shall produce cross-range error. 

 For an elliptical orbit true anomaly, f, is the 

polar angle measured from the major axis 

PFX( in Fig. 3 —page number 263). Through 

the point P (current position of spacecraft, 

rPFm  , the radial coördinate) erect a 

perpendicular on the major axis. Q is the 

intersection of this perpendicular with a 

circumscribed auxiliary circle about the orbital 

path. QOF (cf. Fig.3) is called the eccentric 

anomaly, E.  

 For this orbit, pericenter, the point on the major 

axis, which is closest to the force center (point A 

in Fig. 3), is chosen as the point at which f = 0. 

Apocenter is the opposite point on the major axis, 

which is farthest from the force center (point A in 

Fig. 3). The line joining the pericenter and the 

apocenter is called the line of apsides. 

 

 

Appendix B: Astrodynamical Relationhips 

 

   Some useful relationships among radial 

coördinate, eccentric anomaly, eccentricity and 

semi-major axis for an elliptical orbit are listed 

below: 

)cos1( Eear   (B1a) 

)(coscos eEafr   (B1b) 

Eafr sinsin   (B1c) 

2
cos)1(

2
cos

E
ea

f
r   (B1d) 

2
sin)1(

2
sin

E
ea

f
r   (B1e) 

   The following may be useful in converting 

circular functions involving true anomalies to 

those involving eccentric anomalies and vice 

versa. 

Ee

eE
f

cos1

cos
cos




  (B2a) 

fe

ef
E

cos1

cos
cos




  (B2b) 

Ee

E
f

cos1

sin
sin




  (B2c) 

fe

f
E

cos1

sin
sin




  (B2d) 

2
tan

2
tan

Ef
  (B2e) 

In Appendix C, the last relation is proved and a 

justification is given for the positive sign taken in 

front of the square root appearing in the 

expression for . 

 Appendix C: Relation Connecting Eccentric 

Anomaly to True Anomaly 

  

 In Fig. 3, semi-minor axis of the ellipse, b, is 

related to a by  ab . Do not confuse the point Q 

in Fig. 3 with the quantity Q defined in eq. (9). 

Using 
fe

p
r

cos1
 and ),1( 2eap  one may 

write ).1()cos1( 2eafer  This may, in turn, 

be written as 
  

reafer  )1(cos 2   

  

Adding er to both sides and using (B1a) on the 

right-hand side, one gets 
  

)cos1)(1()cos1( Eeafr   (C1) 

  

Subtracting er from both sides and using (B1a) on 

the right-hand side, one gets 
  

)cos1)(1()cos1( Eeafr   (C2) 

  

Dividing (C2) by (C1) 
  

)cos1)(1(

)cos1)(1(

cos1

cos1

Ee

Ee

f

f









  

  

Using the identities 

2
sin2cos1 2 f

f    

2
cos2cos1 2 f

f    

with similar results for )cos1( E  and )cos1( E , 

one sees that the above equation reduces to 

2
tan

1

1

2
tan 22 E

e

ef




   

which implies 

2
tan

1

1

2
tan

E

e

ef




   

Below, it is justified that only positive sign with the 

radical gives the correct answer. Consider ORF 

(Fig. 3). One notes that, 

  E 
222




E
 

Further, 0E   0f ; 0E  0f . 

Therefore, 
2

f
and 

2

E
 have the same sign. When 

0
22


E
, 0

2
tan 

E
, 0

2
tan 

f
, which implies  

that  positive  sign  with  the  radical should be 

chosen 
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chosen. Similarly,  

 
22

0



E

, 0
2

tan 
E

, 0
2

tan 
f

 

and, hence, positive sign with the radical is the 

correct choice. 
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Fig. 1 Geometry of the boundary-value problem 
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Fig. 2 Flow chart of the Lambert scheme 
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Fig. 3 Justification of the positive sign in  
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