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Abstract 

Steering a Satellite-Launch Vehicle (SLV) to strictly follow a predefined trajectory imposes 

unnecessary load on the control loop, and may, possibly, saturate servos. This If may 

introduce a permanent error in the vehicle-destination position and velocity vectors. 

Consequently, the payload (the satellite) would be deployed in a wrong orbit. The orbital-

error correction utilizes onboard energy, which reduces the operational life of the satellite. 

Therefore, it is desirable that SLV is capable of altering its trajectory according to the new 

operating conditions, in order to achieve the required destination position and velocity 

vectors. In this paper, an innovative adaptive scheme is presented, which is based on “the 

Multistage-Q System”. Using the control laws expressed in the elliptic-astrodynamical-

coördinate mesh (the normal-component-cross-product steering and the normal-component-

dot-product steering) this scheme proposes a design of autopilot, which achieves the pre-

decided destination position and velocity vectors for a multistage rocket, when each stage is 

detached from the main vehicle after it burns out, completely. In “the Inverse-Q System”, one 

applies the extended-cross-product steering to the vector sum of velocity vectors of spacecraft 

and interceptor. 

 

Keywords: Q system, extended-cross-product steering, dot-product steering, elliptic-

astrodynamical-coördinate mesh 

 

 

Introduction 
 

  Flight dynamics of satellite-launch vehicle (SLV) is an example of unstable, non-autonomous, 

multivariable and nonlinear system. Several modern control techniques exist that can be effectively 

employed to design a robust controller for attitude control of aerospace vehicles. 
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 In the absence of an efficient guidance scheme, even a state-of-art control system cannot 

guarantee steering of vehicle to its required destination, under constrained conditions. Saturation and 

limited response rate of servomechanism are the universal nonlinear constraints of any control loop, 

which make impossible to implement all the control actions required to move a system from one state 

to any other state through any trajectory. Sometimes, it is almost impossible to reach the desired 

position in the state space. Saturation can give rise to inaccurate or even unstable response of a 

control loop. 

 

 Q system has been used for SLV by different authors [2, 12]. In this paper, we are presenting 

“the Multistage-Q System”. In this formulation, sectionwise corrections are achieved, where 

destination point of first stage is the initiating point of the second stage and so on. In this way position 

and rate saturations (out of range deviations) are avoided. In “the Inverse-Q System”, one applies the 

extended-cross-product steering [4] to the vector sum of velocity vectors of spacecraft and 

interceptor, expressed in the elliptic-astrodynamical coordinate mesh in order to derive them to zero. 

Use of normal-component-cross-product steering [4] and normal-component-dot-product steering [5] 

is recommended to achieve this objective. This paper includes a brief description of these control 

laws. 

 

 The attitude-control problem can be tackled by a number of ways. Real-time computer 

processing requires that the control law should be simple, and these techniques, generally, lead to  

higher-order controllers. On the other hand a nonlinear system, which can be linearized with 

continuous-time feedback, cannot necessarily be linearized with sampled feedback. A simpler attitude 

control loop can be designed for the attitude control of SLV based on effective-integral-control (EIC) 

[9, 10], or by Selective-State Feedback methodology [11]. 

 

 Other schemes, which could be used to steer a satellite-launch vehicle include the Lambert 

scheme [1, 8]. 

 

The Q System 
 

  The Q system is described briefly in [1]. Let r be the radius vector representing the position of 

the spacecraft at an arbitrary time, t, after launch, represented by M in Fig. 1, the correlated velocity 

vector, vC, is defined as the velocity required by the spacecraft at the position r(t) in order that it 

might travel thereafter by free-fall in vacuum to the desired  terminal condition. One defines a 

correlated spacecraft located at point M. The correlated spacecraft is assumed to experience only 

gravity acceleration g and moves with velocity vC. The actual spacecraft velocity is vm, and is affected 

by both gravity g and engine thrust acceleration aT. 

 
Fig. 1. Correlated trajectory and velocity-to-be-gained 
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The velocity to be gained, vg, may be expressed as: 

              mCg vvv −=   

  

Computation of this velocity is only one element of the Q system. Of equal importance is a method to 

control the spacecraft in pitch and yaw, in order that the thrust acceleration causes all the three 

components of vg to vanish, simultaneously. This may be accomplished by extended-cross-product 

steering [4] or dot-product steering [5]. Battin remarks in his book [1], pages 10-11: “If you want to 

drive a vector to zero, it is sufficient to align the time rate of change of the vector with the vector 

itself. Therefore, components of the vector-cross product 

               
dt

d g

g

v
v    

could be used as the basic autopilot rate signals — a technique that became known as cross-product 

steering". However, this definition has a condition missing. The complete definition follows. 

 

Extended-Cross-Product Steering 
 

  In order to drive a vector to zero, it is sufficient to align the time rate of change of the vector 

with the vector itself provided the time rate of change of the magnitude of this vector is a mono-

tonically decreasing function [4]. This law may be termed as extended-cross-product steering. Let A  

be a vector, which needs to be driven to zero. Then, we must have 

             0,0 →
dt

d

dt

d AA
  A  (1) 

This is the basis of the following control law. 

 

Normal-Component-Cross-Product Steering 
 

 In order to bring a vehicle to the desired trajectory one needs to align the normal component of 

velocity with its time rate of change and make its magnitude a monotonically decreasing function of 

time [4]. By normal component one means the component of velocity in the plane normal to reference 

trajectory. This plane passes through a point on the reference trajectory, which is closest to current 

location of center-of-mass of spacecraft. Mathematically, 

                  0,0 →
dt

d

dt

d perp perp

perp

vv
v  (2) 

Therefore, components of the vector 

                
dt

d perp

perp

v
  v    

should be used as the basic autopilot rate signals. For elliptic-astrodynamical-coördinate formulation 

[3, 4, 6, 7] the perpendicular component of velocity may be expressed as: 
  

                zzvv êêv perp +=   (3) 

  

To correct for down-range error, one must have 

                 0,0 →
dt

d

dt

d 



vv
v  (4a) 

To correct for cross-range error, the following could be used as autopilot rate signals 
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                  0,0 →
dt

d

dt

d zz
z

vv
v  (4b) 

Dot-Product Steering 
 

  Dot-product steering is a control law, which involves dot products of the vector, and its time 

rate of change [5]. In order to derive a vector A to zero, one needs to derive the factor 

)cos1( + 
A

 A
dt

d
to zero, where   is the angle between A and 

dt

dA
. In other words 

                   0→+
dt

d

dt

d A
 A

A
. A  (5) 

  In the trajectory problems, it is customary to require the normal component of velocity to 

vanish. Hence, one may develop a special case of dot-product steering. 

 

Normal-Component-Dot-Product Steering 
 

  In order to bring a vehicle to the desired trajectory one needs to derive the factor 

)cos1( + 
v

 v
perp

perp
dt

d
to zero, where   is the angle between perpv and 

dt

d perpv
. The above 

condition may be expressed, mathematically, as 

                      0 . →+
dt

d

dt

d perp

perp

perp

perp

v
v

v
v  (6) 

The steering law may be expressed in elliptic-astrodynamical coordinate mesh as: 

                   0→+
dt

d

dt

d 







v
 v

v
. v , 0→+

dt

d

dt

d z

z

z

z

v
 v

v
. v  (7) 

 

The Multistage-Q System 
 

  Let us consider a 3-stage rocket. Destination point of the first (second) stage is the initiating 

point of the second (third) stage. Mathematically, 
  

                   initialgfinalginitialgfinalg ,3,2,2,1 ; vvvv →→  (8) 

  

  By using these section-wise corrections, one can avoid position saturation and rate saturations. 

This can be effectively, established if the difference velocity vector is expressed in elliptic-

astrodynamical-coördinate mesh and conditions expressed in terms of normal components of velocity, 

which have to be driven to zero. 

 

The Inverse-Q System 
 

 Let us define a velocity vector, v, representing the vector sum of velocity of the spacecraft and 

velocity of the interceptor. Mathematically, 
  

                     erceptorspacecraft intvvv +=  (9) 
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  This velocity has to be derived to zero. Extended-cross-product steering [4] may be used to 

design basic autopilot, with dot-product steering [5] incorporated in the computation loop to check 

whether the control action has taken place or not, making it a closed-loop control system. 

 

Conclusions 
 

  Control energy available to SLV is, mainly, used (or should, mainly, be used) for stabilization 

of vehicle and for disturbance-rejection action. Forcing the vehicle to follow an unnatural flight path 

can saturate the control loop, leaving be no room for disturbance-rejection action. This situation 

makes the whole guidance and control design inefficient.  Sometimes, the saturation can make the 

loop unstable or, at least, a permanent error is introduced due to failure of implementation of control 

laws. Error in the position and the velocity vectors at the payload-ejection point can deploy the 

payload (satellite or an experimental payload) in a wrong orbit (or trajectory).   

 

  The multistage-Q system attempts to address this problem using corrections achieved when one 

stage is separated after burnout. The inverse-Q system may be used to remove an unwanted debris or 

out-of-service satellite from the orbit. 
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Appendix: SAK’s Review of “An Introduction to the Mathematics and [the] Methods of 

Astrodynamics” by Richard H. Battin 
 

  This review appears in https://www.amazon.com as well as on first author’s homepage 

https://www.ngds-ku.org/Papers/Battin.pdf — Book Rating: ; full text of the book: 

https://arc.aiaa.org/doi/pdf/10.2514/4.861543 

 

  The following comments refer to the 1987 edition. Some of these comments were 

communicated to Professor Battin, who, very kindly, acknowledged them. 

 

  The book by Richard Horace Battin, Senior Lecturer in Aeronautics and Astronautics, Massa-

chusetts Institute of Technology, United States, covers essential mathematical background needed to 

work with astrodynamical problems. Topics covered include hypergeometric functions, elliptic 

integrals, continued fractions, coördinate transformations as well as essentials of two-body-central-

force motion. 

 

The author's way of discussing these topics with historical introduction and personal narrative makes 

the book interesting to read. There are minimal typographical errors, probably, because the author, 

personally, typeset this book. However, there are a few omissions and oversights. For example, on 

page 172 captions are given for Fig. 4.15 and Fig. 4.16, whereas the actual figures are missing (The 

author has rectified this omission in the 1999 edition). In addition: 

 

a) On page 7 it is stated:  

                                                          g
g

g

v

s
vr =Δ   

 where .dts gg = v In this equation, a scalar on the left-hand side is equated to a vector on the 

https://www.amazon.com/
https://www.ngds-ku.org/Papers/Battin.pdf
https://arc.aiaa.org/doi/pdf/10.2514/4.861543
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right-hand side. The equation should be modified as: 

                                                         dts gg = v  

b) On pages 10-11 it is stated: "If you want to drive a vector to zero, it is sufficient to align the 

time rate of change of the vector with the vector itself." This is not true, in general, but only 

if time rate of change is negative (cf. [4]). 

c) On page 13 the author tries to show that curl of vc in the equation:  

                                                   ttancons=



cv

 

vanishes by the following argument. "The demonstration concludes with an argument that 

the fluid is converging on the target point Tr  so that the density in the vicinity of Tr  is 

becoming infinite. Hence, the constant is zero, implying that the curl is everywhere zero." 

There are 2 problems in this line of argument: (i) The statement “hence, the constant (see 

note at the end of manuscript) is zero” is true, only if the numerator is finite. =B  implies 

0=BA , only if A . Otherwise, one has to apply l’Hospital rule; (ii) Even if the 

constant is supposed to be zero, this does not imply that the curl is everywhere zero. 

0=BA , where =B  does not imply that 0=A . In fact, A could have any finite value. 

d) On page 109 equation of motion in a frame of reference moving with acceleration 1a− is 

written as: 

                                   







−







+
=−

rr

mGm

m

mm
m

r
aa

2
21

1

21
1 22   )(  

Since the frame is non-inertial (accelerated) Newton’s second law, aF m= , is not 

applicable in this frame. 

e) On page 223 it is stated: “When we compare Eqns. (5.57) and (5.58), it is clear that we must 

have: 

                                                
E

EE
E

sin

)sin(6
sin

−
  

……….” This is not the only choice for sinE, which reduces (5.58) to (5.57) in the limit 

0→E . The word “must” is inappropriately used here. 

 

I would recommend this book very strongly to any one involved in astrodynamical research. 
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