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Incompleteness of Cross-Product Steering and a Mathematical
Formulation of Extended-Cross-Product Steering

Syed Arif Kamal*
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Abstract

Cross-product steering, as presented by Battin, is incomplete and cannot achieve the
desired results. A further condition on the magnitude of rate of change of velocity is
needed to bring the spacecraft in the desired orbit. The new control law is named as
extended-cross-product steering, which incorporates this additional condition. Mathe-
matical representation using elliptic-astrodynamical-codrdinate mesh is presented.

Nomenclature

a) Symbols (in alphabetical order)

Symbol  Description

£ Generalized codrdinate describing shape of ellipse
LR Reduced mass of the two-body system
a Semi-major axis of the ellipse

(continued on the next page)
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Symbol  Description

an Unit vector normal to the trajectory plane (in the direction of relative
angular momentum of the two-body system)

&para Unit vector pointing parallel to the positive sense of semi-major axis

aperp Unit vector determined by &para x &perp = an

b Semi-minor axis of the ellipse

c Distance of focus from center of the ellipse

Co Speed of light in free space

e Eccentricity of the ellipse

én Re-labeling of vector an

Epara Unit vector tangent to the trajectory curve, pointing in the direction of
motion of spacecraft (direction of this vector is different from ég)

€perp Unit vector, normal in the trajectory plane, determined by &para x €perp = én

éx Unit vector in the direction of increasing x coddinate

éy Unit vector in the direction of increasing y coddinate

8, Unit vector in the direction of increasing z coddinate

& Unit vector in the direction of increasing true anomaly, f

és Unit vector in the direction of increasing elliptical-shape coddinate, &

e Unit vector in the direction of increasing eccentric anomaly

E Eccentric anomaly

E Energy of the system

f True anomaly

G Universal constant of gravitation

H Hamiltonian of the system

l Relative angular momentum of the two-body system

L Lagrangian of the system

m Mass of the lighter body

M Mass of the heavier body

f) Parameter of the orbit (semi-latus rectum of the ellipse)

PE Canonical momentum corresponding to eccentric anomaly, E

pe Canonical momentum corresponding to elliptical-shape coddinate, &

r Radial coordinate

r Radius vector in the inertial cotrdinate system

Iy Radius vector of desired location

t Universal time

TYPE Variable expressing direction of motion of spacecraft relative to earth rotation

v Velocity vector in the inertial codrdinate system

(,para Ve_Iocity vector in the inertial codrdinate system parallel to the desired
trajectory

(,perp Velocity vector in the inertial codrdinate system in a plane normal to the

desired trajectory

(continued on the next page)
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Symbol  Description

Vp Component of \7perp in the plane of trajectory (normal in the trajectory
plane)

N Component of \7perp normal to the plane of trajectory

x codrdinate in the inertial system
y coordinate in the inertial system
z codrdinate in the inertial system

N< X <,

b) Compact Notations

In order to simplify the entries,
= J1-g? , =G (m+ M)
1+e

are used in the expressions. A dot above any variable denotes time rate of change. For
example, E means dE/dt. A double dot means second derivative with respect to time,
E represents d?E/dt?,

c) Codrdinate Systems

The geocentric-inertial-codrdinate system O(é,,€,,€,) is a right-handed cartesian co0r-
dinate system fixed at a certain instant t = t; with the z axis coinciding with the axis of
earth, the positive x axis directed from the center of earth towards a point on the surface
of earth at the intersection of the equator and the meridian.

The ellipse-based-inertial-codrdinate system O(8yara :8perp.an)is @ right-handed coor-

dinate system with origin at the center of ellipse. The positive senses of major and minor
axes are determined by the convention that &para. x 8perp points in the direction of relative
angular momentum of the two-body system.

The trajectory-based-noninertial-codrdinate system O(€,,..,€ .. €y)is a right-handed
body codrdinate system. The positive sense of éperp is determined by the convention that
€para. x €perp points in the direction of relative angular momentum of the two-body system.
The elliptic-astrodynamical-noninertial-coordinate system O(é.,é,,&,) is described in
the paper with drawing (Fig. 1).

The cylindrical--noninertial-cotrdinate system O(é,,€é,,&, ) is the standard codrdinate
system used in two-body problem.
Introduction

Spacecraft dynamics is involved with correct and timely answers of questions like, where
the spacecraft is currently located in space (navigation), in which orbit the spacecraft is
desired to be (guidance), and, what action is needed to bring the spacecraft to the desired
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orbit (control action). If a spacecraft or a satellite were not in its proper orbit, it would
not serve its purpose. Hence, it is very important to take the spacecraft to the desired orbit
and keep it there, for the entire duration of its flight.

In order to accomplish this, one may need to employ control systems. In the open-loop
control system, one does not check the output against the reference after taking the
control action. Regular of a fan may be cited as an example of such a system. In the
closed-loop control system, one does check the output against the reference after taking
the control action. Voltage stabilizer is a good example of such a system.

Control laws are needed, on the basis of which autopilots are designed. It must be borne
in mind that every control law is valid under certain conditions. It is not possible to
devise a universal control law.

In this paper validity of a control law, cross-product steering, is discussed. The flight of a
spacecraft may be considered, mathematically, as a two-point, fixed-transfer-time (fixed-
time-of-flight), boundary-value problem. In the Q system a correlated spacecraft is
supposed to be following the reference trajectory, having the same transfer time. From
the current location of actual spacecraft to the corresponding position in the trajectory of
correlated spacecraft, a vector is constructed, which is termed as velocity-to-be-gained.
This control law is used to drive velocity-to-be-gained vector to zero at the end of flight.
It is shown that the definition of cross-product steering is incomplete and needs an
additional condition.

The Elliptic-Astrodynamical-Codrdinate Mesh

Two-body, central force motion is, generally, presented in the plane-polar codrdinates,

5
] Q P(X, ¥)
7 /i\“ﬂ P, B)
g N VN
17

| U
I,.’ / \H‘"
i Iy
e — A R \L X
b, F'(-¢c, 0) T {e] F(c, 0) j A

Fig. 1. The elliptic-astrodynamical-codrdinate mesh
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with the polar angle termed as the true anomaly, f. Combined with the z codrdinate this
represents a cylindrical-codrdinate mesh (r, f, z). Although simple enough, this is unfor-
tunately, not the optimum choice for the bounded keplarian motion, as the orbits are ellip-
ses, in general. The elliptic-astrodynamical-co6rdinate mesh (Fig. 1), (& E, 2), is adapted
adapted from the elliptic-cylindrical-coddinate mesh, well known in the literature. £ —a
generalized codrdinate describing the shape of ellipse — is a function of a (semi-major
axis of the elliptical trajectory) and e (eccentricity). E is the eccentric anomaly and z is
same as the z codrdinate in the cartesian mesh. For an elliptic orbit, £ = constant. The
lagrangian and the hamiltonian are, therefore, functions of a single variable, E. Appendix
A lists coordinate transformations and Appendix B lists transformation of unit vectors for
the cartesian-, the cylindrical- and the elliptic-astrodynamical-codrdinate meshes.

Lagrangian and Hamiltonian Formulation

Taking the elliptic-astrodynamical coordinates as generalized coordinates, the expre-
ssions for lagrangian and hamiltonian are obtained using the following general results,
valid for two-body central force motion:

-2
dr ™
la L=% ur|—| —Ulr
(12) e | —U
(2&) H:ij qj_l—

If the force law takes the form, U (|_r]) =— GF]M , the expression for lagrangian becomes
r

(1b) L =% g (¢2 + 12 £2)+ CMM

Applying the transformations —cylindrical to elliptic-astrodynamical codrdinates —and
rearranging, the above may be written as

201 A2 2 .
(10) _ mMa“(1—e“ cos” E) £2. GmM
2(m+M) a(l—ecosE)
The canonical momenta, pe and psmay be obtained from this lagrangian,

201 a2 2 .
(3a, b) Pe = i - mMa (L-e"cos” E) E, pe= a—L = constant
oF m+ M B&
The hamiltonian, therefore, may be obtained as
(2b) H=peE +pes& —L
or, in terms of the elliptic-astrodynamical-co6rdinate mesh
2
(20) Hoo (M MPe Gy
a(l—ecosE)| 2mMa(l+ecosE)

a) Constants of Motion

Examining Eqg. (2c), one notes that the hamiltonian does not contain time, explicitly.
Therefore [1, 2]
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(4) 0=""=°"

Also, the transformation equations (see Appendix A) do not contain time, explicitly.
Therefore, H = E, energy of the system. Hence, the first constant of motion is found to
be

E (energy of the system)

Since, p, =0, the other constant of motion is

pe(canonical momentum corresponding to codrdinate &)

Also, £=0on an elliptical trajectory. The third constant of motion is

¢ (elliptical-shape codrdinate)

Recall that there were only two constants of motion in the conventional treatment of two-
body problem in the plane-polar coordinates, viz., the total energy, E , and the relative
angular momentum, | .

b) Rates of Change of Codrdinates and Momenta

Using expressions for lagrangian (1c) and hamiltonian (2c), the rates may be evaluated

(5a) aL_p° _ OH _ ezpé(m+M)sin2E GmMesinE
—=p = ———=

ok OE  2mMa?(1-e?cos® E)? B a(l-ecosE)?
oL oH
5b Czp.=-T=
(5b) o¢ P: o¢
oL (m+M)p.
6a E= =
(6a) ope  mMa’(l-e’cos® E)®
(6b) £= AL _,

op.

c¢) Equation of Motion

Lagrangian equation for the elliptic-astrodynamical codrdinate, E, is set up to obtain the
equation of motion along ég,
oL d oL

@) ———— =0
OE dt o(dE/dt)

Using Equations (3a), (5a) and rearranging, one obtains

®) (1—e?cos® E) E+a(e? sin 2E) E2 4 — A@NE

a’(l—ecoskE)

This is a second-order, inhomogeneous differential equation, whose solution must be

Kepler's equation. Using Kepler's equation in the form (7 is time for pericenter passage)

9) Ju(t—7)=a*(E —esin E)
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it has been verified that Eq. (9) is a solution of Eq. (8).

d) Transfer-Time Equation

Transfer-time equation between two points having eccentric anomalies E;and E,, (corres-
ponding to times t,and t,, respectively) may be expressed as

(10) t, -t = \/E[(Ez —esin E,) - (E, —esin E))][TYPE]
7]

The factor TYPE has to be introduced because Kepler's equation is derived on the
assumption that t increases with the increase in f. Therefore, the difference

[(E, —esin E,)—(E, —esin E,)]

shall come out to be negative for spacecrafts orbiting in a sense opposite to rotation of
earth. The factor TYPE ensures that the transfer time (which is the physical time)
remains positive in all situations by adapting the convention that TYPE = +1for
spacecrafts moving in the direction of earth rotation, whereas, TYPE = —1 for spacecrafts
moving opposite to the direction of earth rotation. This becomes important in computing
correct flight-path angles in Lambert scheme.

Cross-Product Steering

Battin remarks in his book [3]: "If you want to drive a vector to zero, it is sufficient to
align the time rate of change of the vector with the vector itself. Therefore, components
of the vector cross product

dt
could be used as the basic autopilot rate signals — a technique that became known as

cross-product steering (\7g represents velocity-to-be-gained in the Q system)". However,
this definition has a condition missing. The complete definition follows.

a) Extended-Cross-Product Steering

In order to drive a vector to zero, it is sufficient to align the time rate of change of the
vector with the vector itself provided the time rate of change of the magnitude of this
vector is a monotonically decreasing function. This law may be termed as extended-

cross-product steering. Let A be a vector, which needs to be driven to zero. Then, we
must have

A d|A
(11) de—Aao,‘—w

dt dt
This definition may be rewritten using elliptic-astrodynamical-codrdinate formulation.
One notes that Equations (3a, b) show that there is no motion along the é: direction
(because pe = 0). On the basis of Eq. (6b), one concludes that £ = constant. This may,
also, be written as

173



Syed Arif Kamal

(12) o 46 _o¢dx ofdy ogdz_

dt oxdt oy dt oz dt
which implies thatv is perpendicular to V&. This is the basis of the following control
law.

Vé-v

b) Normal-Component-Cross-Product Steering

In order to bring a vehicle to the desired trajectory one needs to align the normal
component of velocity with its time rate of change and make its magnitude a
monotonically decreasing function of time. By normal component one means the
component of velocity in the plane normal to reference trajectory. This plane passes
through a point on the reference trajectory, which is closest to current location of center-
of-mass of spacecraft. Mathematically,

- dvpep . G Vperp‘

13 Vv X — 0, <0
(13) PP it dt
Therefore, components of the vector

- d \7perp
Vperp X
perp dt

should be used as the basic autopilot rate signals, where
(14) Vperp =VP +VN = Vpép +VNéN

For elliptic-astrodynamical-codrdinate formulation, Eq. (14) takes the form
(15) \7perp = Vé‘éf + VZéZ

To correct for down-range error, one must have

L dy div
(16a) vex Ve o5l g
dt dt
To correct for cross-range error, the following could be used as autopilot rate signals
- v dvz
(16b) v x 3z 0 g
dt dt

Conclusion

Down-range and cross-range errors need to be eliminated to make the spacecraft reach
the desired location. All the components of velocity normal to the desired orbit
(trajectory) must be driven to zero, in order to accomplish this goal. The undesired

components of velocity, \75, and, \72, must be made to vanish using extended-cross-
product steering (or, more appropriately, normal-component-cross-product steering). The

desired component is ve, which is responsible for taking the spacecraft to its pre-
assigned location. With some modifications, extended-cross-product steering may be
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used for attitude control of satellites. A continuation of this work is presented elsewhere
in this volume [4], which may, also, be used to drive the normal (undesired) components
of velocity to zero.
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Appendix A: Transformation of Codrdinates
a) Cylindrical to Cartesian and Vice Versa

(Ala,b) x=rcosf; r=yx°+y?

(Alc,d) y=rsinf; f=tantY
(Ale, f) z1=12, 7-7

b) Elliptic-Astrodynamical to Cylindrical and Vice Versa

1 1+ e
A2a, b r=a(l—ecosk); ——— |n=/=
( ) ( ) ° 2ae 1l-€
4 1 E -1 f
(A2c, d) f =2tan—(—tan E) ; E=2tan"(5 tan E)
E]
(A2, 1) z2=12; 7=12
c) Cartesian to Elliptic-Astrodynamical and Vice Versa
1 1+ e
A3a, b =—7In——o/; x=a(cosE —e
( ) < e " < ( )
(A3, d) E-tant—Y _; y—acsinE
’ e(x+ae)
(A3e, 1) z=12; 7=7
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Appendix B: Transformation of Unit Vectors

a) Cylindrical to Cartesian and Vice Versa

. . o A Xé, + yéy
(Bla,b) &, =cosfé —sin fé,; e, =—F——
X2 +y?
. o A ) — Y, +xé,
(Blc,d) &, =sin fé +cosfé,; 6, =——> Y
! y r /X2 4 yz
(Ble,f) & =¢,; e, =8
b) Elliptic-Astrodynamical to Cylindrical and Vice Versa
sinh(2ae)é, —sin(2E)é . Al —aly
(B2a,b) &, = (2ae)e ( )E; &=
H Va, +a,
sin(2E)é. +sinh(2ae&)é L &l +agy
(BZC, d) éf — ( ) 14 ( é:) E ’ eE :12—2
H NERES-R
(B2e,f) &, =¢,; e, =8
c) Cartesian to Elliptic-Astrodynamical and Vice Versa
. sinh(ae&)cosEé, —cosh(ae&)sin E& Xe2b +vyé
(BBa,b) 8, = 5) éh ( 5) E; é§= (S hx yy
ae
_ cosh(aeé)sin E€, +sinh(ae&)cosEé — V& +xe?é
(BBC, d) ey _ 5) £ , ( 5) E : éE _ Vi Xh € €,
ae
(B3e, f) éz = éz ’ éz = éz
where,

h=\(e/e)® +(y/ae)? =sinh?(@e&) +sin’ E , H =/sinh?(2ae&) +sin*(2E) ,
a,=r+ae—e’(ae+rcosf), a =aesin f —e’sin f(rcosf +ae),

a_ex+w/x2+y2 1 In1+e

e’ - 2e¢é l1-e€
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