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Incompleteness of the Cross-Product Steering and a Mathematical 

Formulation of the Extended-Cross-Product Steering 
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Abstract 
 

The Cross-product steering, as presented by Battin, is incomplete and cannot achieve the 

desired results. A further condition on the magnitude of rate of change of velocity is 

needed to bring the spacecraft in the desired orbit. The new control law is named as 

extended-cross-product steering, which incorporates this additional condition. Mathe-

matical representation using elliptic-astrodynamical-coördinate mesh is presented. 

 

________________________________________________________________________ 

 

 

Nomenclature 
 

a) Symbols (in alphabetical order) 
 

Symbol Description 

 Generalized coördinate describing the shape of ellipse 

Rμ  Reduced mass of the two-body system 

a Semi-major axis of the ellipse 
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Symbol Description 

Nâ  Unit vector normal to the trajectory plane (in the direction of relative 

angular momentum of the two-body system) 

paraâ  Unit vector pointing parallel to the positive sense of semi-major axis 

perpâ  Unit vector determined by Nperppara âââ   

b Semi-minor axis of the ellipse 

c  Distance of focus from center of the ellipse 

0c   Speed of light in the free space 

E Eccentricity of the ellipse 

Eê  Unit vector in the direction of increasing eccentric anomaly 

ê  

 

Unit vector in the direction of increasing elliptical-shape coödinate,   

fê  

 

Unit vector in the direction of increasing true anomaly, f 

Nê  Re-labeling of vector Nâ  

paraê  Unit vector tangent to the trajectory curve, pointing in the direction of 

motion of spacecraft (direction of this vector is different from )Eê  

perpê  Unit vector, normal in the trajectory plane, determined by Nperppara eee ˆˆˆ    

xê  Unit vector in the direction of increasing x coödinate 

yê  Unit vector in the direction of increasing y coödinate 

zê  Unit vector in the direction of increasing z coödinate 

E Eccentric anomaly 
E Energy of the system 
f True anomaly 

G The universal constant of gravitation 

H Hamiltonian of the system 

  Relative angular momentum of the two-body system 

L Lagrangian of the system 

m Mass of the lighter body 

M Mass of the heavier body 

p  Parameter of the orbit (semi latus-rectum of the ellipse) 

Ep  
 

Canonical momentum corresponding to eccentric anomaly, E 

p  
 

Canonical momentum corresponding to elliptical-shape coödinate,  

r The radial coördinate 

r  Radius vector in the inertial-coördinate system 

2r  Radius vector of the desired location 

t The universal time 

TYPE Variable expressing direction of motion of spacecraft relative to earth rotation 

v  Velocity vector in the inertial-coördinate system 

parav  Velocity vector in the inertial-coördinate system parallel to the desired 

trajectory 
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(continued on the next page) 

Symbol Description 

perpv  Velocity vector in the inertial-coördinate system in a plane normal to the 

desired trajectory 

Pv  Component of perpv in the plane of trajectory (normal in the trajectory plane) 

Nv  Component of perpv  normal to the plane of trajectory   

x x coördinate in the inertial system  

y y coördinate in the inertial system 

z z coördinate in the inertial system 

 

b) Compact Notations 
 

In order to simplify the entries, 

   = ,1 2e   = ,
1

1

e

e




  = G (m + M) 

are used in the expressions. A dot above any variable denotes time rate of change. For 

example, E means dE/dt. A double dot means second derivative with respect to time, E   

represents d
2
E/dt

2
.
 
 

 

c) The Coördinate Systems 
 

The geocentric-inertial-coördinate mesh: ),,( zyx êêêO  is a right-handed cartesian coör-

dinate system fixed at a certain instant t = t1 with the z axis coinciding with the axis of 

earth, the positive x axis directed from the center of earth towards a point on the surface 

of earth at the intersection of the equator and the meridian — ‘mesh’ indicates that the 

coordinate triad is linked through orthonormality relations. 
 

The ellipse-based-inertial-coördinate mesh: ),,( Nperppara âââO is a right-handed coör-

dinate system with origin at the center of ellipse. The positive senses of major and minor 

axes are determined by the convention that perppara ââ   points in the direction of relative 

angular momentum of the two-body system. 
 

The trajectory-based-noninertial-coördinate mesh: ),,( Nperppara êêêO is a right-handed 

body coördinate system. The positive sense of êperp is determined by the convention that  

perppara ee ˆˆ   points in the direction of relative angular momentum of the two-body 

system. 
 

The elliptic-astrodynamical-noninertial-coördinate mesh: ),,( NE êêê O  is described in 

the paper with drawing (Fig. 1).  
 

The cylindrical-noninertial-coördinate mesh: ),,( Nfr êêêO  is the standard coördinate 

system used in the two-body problem. 
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Introduction 
 

Spacecraft dynamics is involved with correct and timely answers of questions like, where 

the spacecraft is currently located in space (navigation), in which orbit the spacecraft is 

desired to be (guidance), and, what action is needed to bring the spacecraft to the desired 

orbit (control action). If a spacecraft or a satellite were not in its proper orbit, it would 

not serve its purpose. Hence, it is very important to take the spacecraft to the desired orbit 

and keep it there, for the entire duration of its flight. 
 

In order to accomplish this, one may need to employ control systems. In the open-loop 

control system, one does not check the output against the reference after taking the 

control action. Regular of a fan may be cited as an example of such a system. In the 

closed-loop control system, one does check the output against the reference after taking 

the control action. Voltage stabilizer is a good example of such a system. 
 

Control laws are needed, on the basis of which autopilots are designed. It must be borne 

in mind that every control law is valid under certain conditions. It is not possible to 

devise a universal control law. 
 

In this paper validity of a control law, the cross-product steering, is discussed. The flight 

of a spacecraft may be considered, mathematically, as a two-point, fixed-transfer-time 

(fixed-time-of-flight), boundary-value problem. In the Q system a correlated spacecraft is 

supposed to be following the reference trajectory, having the same transfer time. From 

the current location of actual spacecraft to the corresponding position in the trajectory of 

correlated spacecraft, a vector is constructed, which is termed as velocity-to-be-gained. 

This control law is used to drive velocity-to-be-gained vector to zero at the end of flight. 

It is shown that the definition of cross-product steering is incomplete and needs an addi-

tional condition. 

 

The Elliptic-Astrodynamical-Coördinate Mesh 
 

The two-body, central force motion is, generally, presented in the plane-polar coördinates, 

                                                 
 Fig. 1. The elliptic-astrodynamical-coördinate mesh — here c is distance of focus from 

center of ellipse (do not confuse with ,0c which is speed of light in the free space) 
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with the polar angle termed as the true anomaly, f. Combined with the z coördinate this 

represents a cylindrical-coördinate mesh (r, f, z). Although simple enough, this is unfor-

tunately, not the optimum choice for the bounded-Keplarian motion, as the orbits are 

ellipses, in general.  The elliptic-astrodynamical-coördinate mesh (Fig. 1), (, E, z), is 

adapted from the elliptic-cylindrical-coödinate mesh, well known in the literature.   a 

generalized coördinate describing the shape of ellipse   is a function of a (semi-major 

axis of the elliptical trajectory) and e (eccentricity). E is the eccentric anomaly and z is 

same as the z coördinate in the cartesian mesh. For an elliptic orbit,  = constant. The 

Lagrangian and the Hamiltonian are, therefore, functions of a single variable, E. 

Appendix A lists coördinate transformations and Appendix B lists transformation of unit 

vectors for the cartesian-, the cylindrical- and the elliptic-astrodynamical-coördinate 

meshes. 

 

The Lagrangian and the Hamiltonian Formulations 
 

Taking the elliptic-astrodynamical coördinates as generalized coördinates, the expre-

ssions for the Lagrangian and the Hamiltonian are obtained using the following general 

results, valid for two-body central force motion: 

(1a) r
r

U
dt

d
μL 

2

R
2

1
 

(2a)  LqpH  jj   

If the force law takes the form,.
r

r
GmM

U )( , the expression for the Lagrangian 

becomes 

(1b) 
r

GmM
frrμL  )(

2

1 222
R

  

Applying the transformations, the cylindrical to the elliptic-astrodynamical coordinates, 

and rearranging, the above may be written as 

(1c)  
)cos1()(2

)cos1( 2
222

Eea

GmM
E

Mm

EemMa
L







   

The canonical momenta, pE and p may be obtained from this Lagrangian, 

(3a, b) Ep
E

L




 ,

1 222

E
Mm

)Ecose(mMa 



 ξp 




 

L
  constant 

The Hamiltonian, therefore, may be obtained as 

(2b) LξpEpH  


E   
 

or, in terms of the elliptic-astrodynamical-coördinate mesh 

(2c)   


















 GmM

EemMa

pMm

Eea
H

)cos1(2

)(

)cos1(

1 2
E  
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a) The Constants of Motion 
 

Examining Eq. (2c), one notes that the Hamiltonian does not contain time, explicitly. 

Therefore [1, 2] 

(4)  
dt

dH

t

H





0  

Also, the transformation equations (see Appendix A) do not contain time, explicitly. 

Therefore, H = E, energy of the system. Hence, the first constant-of-motion is found to be 
 

  E (energy of the system) 
 

Since, ξp = 0, the other constant-of-motion is  

 

   ξp  (canonical momentum corresponding to the coördinate ) 

 

Also,   = 0, on an elliptical trajectory. The third constant-of-motion is 
 

   (the elliptical-shape coördinate) 
 

Recall that there were only two constants of motion in the conventional treatment of two-

body problem in the plane-polar coördinates, viz., the total energy, E, and the relative 

angular momentum, .  

 

b) Rates of Change of Coördinates and Momenta 
 

Using expressions for the Lagrangian (1c) and the Hamiltonian (2c), the rates may be 

evaluated 

(5a) 
E

L




 Ep 






E

H
22222

22

)1()1(2

2)(

Ecosea

EsinGmMe

EcosemMa

EsinMmpe E







 

(5b)  


L
 ξp 0






ξ

H
 

(6a)  E 





Ep

L

2222
E

)cos1(

)(

EemMa

pMm




 

(6b)  0
ξ







p

L
ξ  

c) The Equation of Motion 
 

The Lagrangian equation for the elliptic-astrodynamical coördinate, E, is set up to obtain 

the equation of motion along êE, 

(7)  0
)/(











dtdE

L

dt

d

E

L
 

Using Equations (3a), (5a) and rearranging, one obtains 

(8)      0
)cos1(

sin
)2sin(

2

1
)cos1(

23

2222 





Eea

Ee
EEeEEe   
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This is a second-order, inhomogeneous differential equation, whose solution must be 

Kepler's equation. Using Kepler's equation in the form ( is time for pericenter passage) 
 

(9)  )sin()( 2/3 EeEat    
 

it has been verified that Eq. (9) is a solution of Eq. (8). 

 

d) The Transfer-Time Equation 
 

The transfer-time equation between two points having eccentric anomalies 1E and 2E , 

(corresponding to times 1t and 2t , respectively) may be expressed as 

(10) ])][sin()sin[( 1122

3

12 TYPEEeEEeE
a

tt 


 

The factor TYPE  has to be introduced because Kepler's equation is derived on the 

assumption that t increases with the increase in f. Therefore, the difference  
 

   )]sin()sin[( 1122 EeEEeE    
 

shall come out to be negative for spacecrafts orbiting in a sense opposite to rotation of 

earth. The factor TYPE  ensures that the transfer time (which is the physical time) 

remains positive in all situations by adapting the convention that 1TYPE for 

spacecrafts moving in the direction of earth rotation, whereas, 1TYPE  for spacecrafts 

moving opposite to the direction of earth rotation. This becomes important in computing 

correct flight-path angles in the Lambert scheme. 

 

The Cross-Product Steering 
 

Battin remarks in his book [3]: "If you want to drive a vector to zero, it is sufficient to 

align the time rate of change of the vector with the vector itself. Therefore, components 

of the vector cross product 

 
dt

d g
g

v
v   

could be used as the basic autopilot rate signals — a technique that became known as 

cross-product steering ( gv represents velocity-to-be-gained in the Q system)". However, 

this definition has a condition missing. The complete definition follows. 

 

a) The Extended-Cross-Product Steering 
 

In order to drive a vector to zero, it is sufficient to align the time rate of change of the 

vector with the vector itself provided the time rate of change of the magnitude of this 

vector is a monotonically decreasing function. This law may be termed as the extended-

cross-product steering. Let A  be a vector, which needs to be driven to zero. Then, we 

must have 

(11) 00  
dt

d
,

dt

d AA
A  
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This definition may be rewritten using the elliptic-astrodynamical-coördinate 

formulation. One notes that Equations (3a, b) show that there is no motion along the ê 

direction (because p  = 0). On the basis of Eq. (6b), one concludes that  = constant. This 

may, also, be written as 

 (12)   v.


ξ
dt

dz

z

ξ

dt

dy

y

ξ

dt

dx

x

ξ

dt

dξ















0  

which implies that v is perpendicular to  . This is the basis of the following control 

law. 

 

b) The Normal-Component-Cross-Product Steering 
 

In order to bring a vehicle to the desired trajectory, one needs to align the normal 

component of velocity with its time rate of change and make its magnitude a 

monotonically-decreasing function of time. By normal component one means the 

component of velocity in the plane normal to reference trajectory. This plane passes 

through a point on the reference trajectory, which is closest to current location of center-

of-mass of spacecraft. Mathematically, 

(13)  00
perpperp

perp 
dt

d
,

dt

d vv
v  

Therefore, components of the vector  

  
dt

d perp
perp   

v
v   

should be used as the basic autopilot rate signals, where 
 

 (14)  NNPPNPperp êêvvv vv   
 

For the elliptic-astrodynamical-coördinate formulation, Eq. (14) takes the form 
 

(15) zzvv êêv  perp  
 

To correct for down-range error, one must have 

(16a)  0,0
ξξ

ξ 
dt

d

dt

d vv
v  

To correct for cross-range error, the following could be used as autopilot rate signals 

(16b)  0,0
zz

z 
dt

d

dt

d vv
v  

 

Conclusion 
 

Down-range and cross-range errors need to be eliminated to make the spacecraft reach 

the desired location. All the components of velocity normal to the desired orbit 

(trajectory) must be driven to zero, in order to accomplish this goal. The undesired 

components of velocity, ,ξv and, ,zv must be made to vanish using extended-cross-product 



 

  Cross-Product Steering   

  175 

steering (or, more appropriately, normal-component-cross-product steering). The desired 

component is ,Ev


which is responsible for taking the spacecraft to its pre-assigned 

location. With some modifications, extended-cross-product steering may be used for 

attitude control of satellites. A continuation of this work is presented elsewhere in this 

volume [4], which may, also, be used to drive the normal (undesired) components of 

velocity to zero. 
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Appendix A: Transformation of Coördinates 
 

a) The Cylindrical to the Cartesian and Vice Versa 
 

(A1a, b) ;cos frx   22 yxr   

(A1c, d) ;sin fry   
x

y
f 1tan  

(A1e, f) ;zz   zz   
 

b) The Elliptic-Astrodynamical to the Cylindrical and Vice Versa 
 

(A2a, b) );cos1 Ee(ar   





1

1
ln

2

1

ae
  

(A2c, d) );
2

tan
1

(tan2 1 E
f


   )

2
tan(tan2 1 f

E    

(A2e, f) ;zz   zz   
 

c) The Cartesian to the Elliptic-Astrodynamical and Vice Versa 
 

(A3a, b) ;
1

1
ln

2

1






ae
  )(cos eEax   

(A3c, d) ;
)(

tan 1

aex

y
E


   Eay sin  

(A3e, f) ;zz   zz   
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Appendix B: Transformation of Unit Vectors 
 

a) The Cylindrical to the Cartesian and Vice Versa 
 

(B1a, b) ;sincos frx êêê ff   
22

yx
r

yx

yx






êê
ê  

(B1c, d) ;cossin fry êêê ff   
22

yx
f

yx

xy






êê
ê  

(B1e, f) ;zz êê   zz êê   

 

b) The Elliptic-Astrodynamical to the Cylindrical and Vice Versa 
 

(B2a, b) ;
)2( sin )2(sinh Eξ

r 
H

E ae êê
ê


  2

1
2
0

f1r0
ξ

êê
ê

aa

aa




  

(B2c, d) ;
)2(sinh )2(sin Eξ

 f
H

aeE êê
ê


  2

1
2
0

f0r1
E

êê
ê

aa

aa




  

(B2e, f) ;zz êê   zz êê   

 

c) The Cartesian to the Elliptic-Astrodynamical and Vice Versa 
 

(B3a, b) ;
sin)(coshcos)(sinh Eξ

x
h

EaeEae êê
ê


  






ha

yx yx
2

ξ

êê
ê  

(B3c, d) ;
cos)(sinhsin)(cosh Eξ

y
h

EaeEae êê
ê


  






ha

xy y
2

x
E

êê
ê  

(B3e, f) ;zz êê   zz êê   

 

where,  

;sin)(sinh 22
22

Eae
a

y

e
h 



















  ;)2()2(sinh 22 EsinaeH    

);cos(2
0 fraeeaera  );cos(sinsin 2

1 aefrfefaea   











1

1
ln

2

1
2

22

e

yxex
a  
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