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Dot-Product Steering
A New Control Law for Satellites and Spacecrafts

Syed Arif Kamal*
Departments of Mathematics and Computer Science
University of Karachi, Karachi, Pakistan

Abstract

A control law is formulated, which employs dot products of velocity and time rate of
change of velocity. Mathematical representation using elliptic-astrodynamical-coordinate
mesh is presented.

Introduction

The normal-component-cross-product steering control law [1] put forward in the other
paper may be used to derive another law, which can be used to derive normal components
of velocity to zero. This law, termed as, dot-product steering, is further developed into
another control law, ellipse-orientation steering, and conditions are derived to determine
and, eventually, eliminate down-range and cross-range errors. This paper is a
continuation of [1], and, hence, the list of symbols, compact notations and codrdinate
systems collected in the Nomenclature section applies to calculations presented in this
paper, as well.

A good overview of orbital dynamics, needed to understand these calculations, may be
found in [2]. The elliptic-cylindrical-codrdinate mesh [3, 4] is adapted to deal with the
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bounded keplarian orbits, as elliptic-astrodynamical-codrdinate mesh. References [3, 4]
illustrate another adaptation of these codrdinates — the cardiac-codrdinate mesh, which
is used to model surface anatomy of the human heart.

In this paper mathematical formulations of dot-product steering, normal-component-dot-
product steering (as the special case of dot-product steering) and ellipse-orientation
steering are presented. In Appendix A, trajectory computed under the assumption of
constant g (parabola) is shown to be the limiting case of elliptical trajectory, when its
semi-minor axis, b, is very small as compared to its semi-major axis, a. In Appendix B,
equation of ellipse written in the form,

- P . 0<f<180°
1+ecos f

is shown to be equivalent to the form, traditionally, recognized:
2 2
(X;Zh) L ;2") _,

Dot-Product Steering

Dot-product steering is a control law, which involves dot products of the vector, and its
time rate of change. In order to derive a vector A to zero, one needs to derive the factor

—|dA
A

— dA —
1 A——
(1) o TA

—

(1+cos 6) to zero, where @ is the angle between A andoij—':‘. In other words

d—A—>O
dt

In the trajectory problems, it is customary to require the normal component of velocity to
vanish. Hence, one may develop a special case of dot-product steering.

Normal-Component-Dot-Product Steering

In order to bring a vehicle to the desired trajectory one needs to derive the factor

-

dVperp g

dv i v
(;Jterp (1+cosg) to zero, where ¢ is the angle between Vperpand

Vperp‘

above condition may be expressed, mathematically, as
dv
perp| _,
dt

d \7perp
dt

+

(2) Vperp - Vperp‘

Proof: From normal-component-cross-product steering, the condition to drive a vector to
zero is vanishing of the product

- dVper
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Dot-Product Steering

This means that the direction of \7perp may not change. However, its magnitude should

Vperp‘

change. The vector \7perpSh0U|d go to zero if———<0.This is possible only if

dv e .
PETP makes an angle of 180° with Vperp , that is
- dv
Vperp - Perp
perp dt 0

— 2 =0s180" =—
d deerp
Vperp‘ at

which reduces to

-~ dv -~ ldv
(3) Vperp - (;)te L Vperp‘ (;)terp =0

This completes the proof of normal-component-dot-product steering.

Examples: Examples of rectilinear, circular and elliptical trajectories are worked out to
illustrate this control law.

a) Stralght Llne To S|mpI|fy the calculations, x axis is chosen along the trajectory.
Vpara = vy = Vy8y, Vperp = Vy +Vg = vyéy +V,€,. The conditions for normal-component-
dot-product steering become

- dVy |d\7y%_}01\72d\72
t

AT

+1|Vz

dt

b) Circle: xy plane is chosen so that the circular trajectory lies entirely in it, with
center of circle coinciding with the origin of the codrdinate system. In cylmdrlcal-
coordinate mesh, (p,p,z), the components of velocity are Vpara _v(/, v

o€
Vperp =V +Vz =V 8, +V,&, . Therefore, normal-component-dot-product-steering law
takes the form
- dv dv .
Vp —2+ 2! p|—>0;vz.d |—>0
dt t| \ dt |

c) Ellipse: In order to wrlte this condltlon for elllptlc astrodynamical-codrdinate
mesh, one notes that Vpara =VE =VEEE, Vperp _v§ +Vz =Vg€s +V,€,. One notes that,

vp =v5 = Vg€, shall contribute to down-range error and VN =V; =V,€,t0 cross-range
error. Therefore, the steering law may be expressed as

-

dv§

Y o

ég|—>O,\7Z d\72 ‘—>0

dt | ot 1V
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Ellipse-Orientation Steering
The condition for no down-range error is
(4a) (é-para-F + "J‘e)(é-para-\7)(92 -1)= (é-perp})(é-perp-\?)
and the condition for no cross-range error is
(4b) ay.v="0
These equations describe another control law, termed as ellipse-orientation steering.
Proof: Expressing v, in terms of v, and v,
V. =V, sinh(aeg) cosE +v, cosh(aesd)sin E

and substituting the values of

sinh(aeé) = y | cosh(aef):XJr—ae, E-tan®— Y
aesin E aecoskE e (x+ae)

one gets, for no down-range error

v (x+ae) e’ +yv,
- ae e

which can be, immediately, generalized to (4a). Similarly, for no cross-range error,
v, — 0, which is generalized to (4b).

f —0

Cross-Range Error Detection

For no cross-range error velocity of the spacecraft must lie in the plane containing rxr2.
In other words

(5) V.rxrz=0

In order to detect cross-range error present, v, is first expressed in terms of x, y, z (body-

codrdinate mesh), and then in terms of inertial system to be able to obtain a condition to
eliminate down-range error. Similarly, v, is expressed in terms of inertial-codrdinate mesh

so that conditions may be obtained to eliminate cross-range error.

Down-Range Error and Cross-Range Error Elimination

To eliminate down-range error, the following condition should hold

(6a) Ye o tanE
Vy

and to eliminate cross-range error
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(6b) v,=0

This can be easily proved using the expressions for v, ,v. and Eg. (5).

Conclusions

Normal-component-dot-product steering, involves, dot products of normal component of
velocity and its time rate of change. It is derived from extended-cross-product steering.
The formulation presented in [1] and this paper may be useful in satellite dynamics.
Using this formulation a satellite-launch vehicle (SLV) may be constructed, which can
inject satellites into the desired orbits. Suitable autopilots may be designed for attitude
control of the satellites.

It is imperative to develop similar formulations for parabolic and hyperbolic orbits, and
compare the results to this formulation.
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Appendix A: Equivalence of a Projectile Trajectory in Constant Gravity
(Parabola) and a Trajectory Computed From Kepler's Equation
(Ellipse)

A projectile is a freely falling body. Its trajectory, as determined in elementary physics
under the assumption of constant gravity, comes out to be a parabola in free space. The
projectile is bound to the earth's gravitational field and, therefore, comes back to the
surface of earth. Table 1 shows that the trajectory of a bound projectile (the potential
energy larger than the kinetic energy) must be either an ellipse or acircle. A parabolic

Table 1. Orbits for Two-Body, Central-Force Motion

Energy Eccentricity ~ Shape of Type of System Number of
() (e) the Orbit  the Orbit  (Bound/Free)  Turning Points
E < Emin e<0 Not allowed — — —
E = Enmin e=0 Circle Closed Bound 00
Emin< E< 0 O<e<1 Ellipse Closed Bound 2
E=0 e=1 Parabola Open Free 1
E>0 e>1 Hyperbola Open Free 1

182



Kamal

Table 2. Features of Orbits

Energy (E) Features

E<Enn  Enn=V(r),

E = Enmin f = 0 everywhere, and r = constant

Emin< E< 0 r., = pericenter, r... = apocenter, which are the turning points
E=0 Iin 1S the turning point

E>0 I, 1S the turning point

orbit is possible only when total energy of the projectile is zero. In other words, the
potential energy must be numerically equal to the kinetic energy (they have opposite
signs). If this condition is satisfied at the surface of earth for a vertical lunch, velocity of
the projectile becomes equal to the escape velocity to get out of the earth's gravitational
field.

This contradiction may be resolved if one looks at the parabolic trajectory as the limiting
case of an elliptical trajectory —the semi-major axis being very large as compared to the
semi-minor axis. In this case the eccentricity, e, shall approach unity. Mathematically,

2
b? =a’(l—e?%)? :>e:1/l—¥
2
Iime:Iimwfl—b—2 =1
a—o a—o0 a

In fact, this is, exactly, what happens in the case of constant g. The assumption of
constant g (acceleration due to gravity) implies that the range is very small as compared
to the circumference of earth (altitude is small). Since one of the foci lies at the center of
earth the semi-major axis is of the order of radius of earth. The semi-minor axis,
however, is of the order of range. Therefore, parabolic trajectory is, actually, the limiting
case of elliptical trajectory.

which gives,

It is interesting to note that for a bound system the number of turning points is greater
than one, the energy is negative and the orbit is closed. Table 2 list some features of
orbits.

Appendix B: Equivalence of Ellipse Equations

An equation of ellipse in the cartesian-codrdinate mesh with center at (h, k)
(x=h)?*  (y-k)’

(B1) " + YR 1

is shown to be equivalent to an equation of ellipse in polar codrdinates:
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(B2) r—— P _-0<f<180°
l+ecos f

To do so one notes that (B2) refers to an ellipse with origin at one of the foci. The
coordinates of center must, therefore, be taken as (—ae, 0) in (B1), thatis h =—ae and k =

0. The semi-major axis, a, and the semi-minor axis, b, are related byb® =a*(1-e?).
Therefore, perimeter of the orbit (semi latus-rectum of the ellipse), p, may be found by

noting that it is the value of r, when f = 90° (or, the value of y, when x = 0). Substituting,
x=0,y=p, in (Bl) and rearranging, one gets

(B3) p=a(l—e?)

Substituting, b*> =a®(1-e?), x=rcosf, y=rsinf, h=-ae, k=0, in (B1), and
using (B3), one obtains a quadratic equation:

(B4) (1—e®cos® f)r? +(2epcos f)r—p®> =0

whose roots are

P, p

r, =— , =
' 1-ecosf'? 1+ecosf

The solution r1 is unphysical because it gives negative values of r (r, being the radius
vector, is always positive). The solution r» is the required form.
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