R. BATTIN

An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition

J. S. PRZEMIENIECKI EDITOR-IN-CHIEF

Review of "An Introduction to the Mathematics and [the] Methods of Astrodynamics" by RICHARD H. BATTIN, AIAA Education Series, New York (United States), 1987 & 1999 (BEST SELLER! Winner of the Summerfield Book Award), as it appears on the Amazon website: https://www.amazon.com • Book Rating: **** • full text of the book:

https://arc.aiaa.org/doi/pdf/10.2514/4.861543

The following comments refer to the 1987 edition. Some of these comments were communicated to Dr. Battin, who, very kindly, acknowledged them in his letter dated October 25, 1993, "Thank you for your letter and your interest in my book. I appreciate your list of corrections and suggestions."

The book by **Richard H. Battin**, Senior Lecturer in Aeronautics and Astronautics, Massachusetts Institute of Technology, United States, covers essential mathematical background needed to work with astrodynamical problems. Topics covered include hypergeometric functions, elliptic integrals, continued fractions, coördinate transformations as well as essentials of two-body-central-force motion.

The author's way of discussing these topics with historical introduction and personal narrative makes the book interesting to read. There are minimal typographical errors, probably, because the author, personally, typeset this book. However, there are a few omissions and oversights. For example, on page 172 captions are given for Fig. 4.15 and Fig. 4.16, whereas the actual figures are missing (*The author has rectified this omission in the* 1999 *edition*). In addition:

a) On page 7 it is stated:

$$\Delta \mathbf{r} = \frac{s_g}{v_g} \mathbf{v}_g$$

where $s_g = \int v_g dt$. In this equation, a scalar on the left-hand side is equated to a vector on the right-hand side. The equation should be modified as:

$$s_g = |\int v_g dt|$$

- b) On pages 10-11 it is stated: "If you want to drive a vector to zero, it is sufficient to align the time rate of change of the vector with the vector itself." This is not true, in general, but only if time rate of change is negative.
- c) On page 13 the author tries to show that constant in the equation:

$$\frac{\nabla \times \mathbf{v}_{\mathrm{c}}}{\rho} = constant$$

vanishes by the following argument. "The demonstration concludes with an argument that the fluid is converging on the target point r_T so that the density in the vicinity of r_T is becoming infinite. Hence, the constant is zero, implying that the curl is everywhere zero." There are 2 problems in this line of argument: (i) The statement "hence, the constant is zero" is true, only if the numerator is finite. $B = \infty$ implies A/B = 0, only if $A \neq \infty$. Otherwise, one has to apply l'Hospital rule; (ii) Even if the constant is supposed to be zero, this does not imply that the curl is everywhere zero. A/B = 0, where $B = \infty$ does not imply that A = 0. In fact, A could have any finite value.

d) On page 109 equation of motion in a frame of reference moving with acceleration $-a_1$ is written as:

$$m_2(\boldsymbol{a}_2 - \boldsymbol{a}_1) = \frac{m_1 + m_2}{m_1} \left(\frac{Gm_1m_2}{r^2} \right) \left[-\frac{\boldsymbol{r}}{r} \right]$$

Since the frame is noninertial (accelerated), Newton's second law, $\mathbf{F} = m\mathbf{a}$, is not applicable in this frame.

e) On page 223 it is stated: "When we compare Eqns. (5.57) and (5.58), it is clear that we **must** have:

$$\sin E \cong \sqrt{\frac{6(E - \sin E)}{\sin E}}$$

.........." This is *not the only choice* for $\sin E$, which reduces (5.58) to (5.57) in the limit $E \rightarrow 0$. The word "must" is inappropriately used here.

I would recommend this book **very strongly** to any one involved in astrodynamical research.

Review sent to Dr. Battin: July 19, 1993 Dr. Battin replied: October 25, 1993 Review posted on https://www.amazon.com—the Amazon website: July 5, 2003

Homepage: https://www.ngds-ku.org/kamal 000-0002-1711-4827
e-mail: profdrakamal@gmail.com

Professor Dr. Syed Arif Kamal MS (Indiana, Bloomington, United States); MA (Johns Hopkins, United States); PhD; Member, AIAA

> Professor of Mathematics UNIVERSITY OF KARACHI July 5, 2003

Note added on October 1, 2010: This review is, now, part of the manuscript: The Multi-Stage-Q System and the Inverse-Q System for Possible Application in Satellite-Launch Vehicle (SLV), Proc. IBCAST 2005, pp 31, 32; full text: https://www.ngds-ku.org/Papers/C66.pdf

Note added on March 20, 2014: Richard H. Battin passed away on February 8, 2014 in Concord, Massachusetts, United States. He was 89 years old. Today, a memorial lecture was delivered by Professor Kamal in his honor during the Second Conference on Mathematical Sciences (CMS 2014) held in Department of Mathematics, University of Karachi. The lecture was entitled, "The Extended-Q System".

Note added on March 25, 2016: The constant in

$$\frac{\nabla \times \mathbf{v}_{\rm c}}{\rho}$$
 = constant

should, actually, be a '**constant vector**' — Noor Fatima Siddiqui, Lecturer, Department of Mathematics, University of Karachi commented today.

Web address of this document: https://www.ngds-ku.org/Papers/Battin.pdf