

MATH 803: Modeling and Simulation of Biological Systems I (2+1)

Activity **Dates Class Schedule** Introduction day September 24 Thursday 1530h - 1709h

Room No. 9, Mathematics **Teaching** September 25 – March 01, **Proposal Presentations** January 1-31 2010 Office Hours **Final Examination** March 04, 2010 (1530h) Thursday 1710h Vacations December 06-31 (Winter) Saturday 1255h

Course Supervisor: **Professor Dr. Syed Arif Kamal**

Member AIAA (USA), IBRO (France)

MS (Indiana, Bloomington, USA); MA (Johns Hopkins, USA); PhD

+ (92 21) 9926 1300-6 ext. 2380 (Tuesday, Friday 1630h – 1730h) Telephone:

http://ngds-ku.org/kamal (Handout address: http://ngds-ku.org/M803-4/MATH803_09.pdf) * Homepage:

kamal(at the rate of)ngds-ku.org e-mail:

Office: Room No. 6, Department of Mathematics, University of Karachi

Directions: http://www.ngds-ku.org/kamal/contact.htm#Directions

Course Objectives

To give the students a sound background in the techniques & the methods of modeling and simulation of biological systems, in particular, human physiological systems, with applications in clinical medicine.

Course Outline

Section A: Fundamentals of scientific method, inductive and deductive logic, handling of scientific projects, accuracy, precision, reproducibility of measure-

Section B: Modeling growth of children, precedence and influence graphs in the physical examination of children

Section C: Moiré fringe topography and rasterstereography, applications in face recognition

Section D: Mathematics and geometry of the cardiovascular system, static modeling of the human heart, mapping of location of heart from 3-D stereophotogrammetric techniques

Section E: Mathematics and geometry of the skeleton,

static modeling of the human spinal column, study of posture of children, 3-D generation of human spinal column, application to quantify curvatures of spinal column (scoliosis, kyphosis and lordosis)

Section F: Sound in medicine, geometry of the ear, mathematics of hearing, physics of eyes and vision

Section G: Mathematics of diagnostic X rays, radiation penetration, X-ray image formation and contrast, photographic process and film sensitivity, radiographic detail, image noise

Project: Must demonstrate knowledge of Visual Basic and C++ to code and simulate a problem related to clinical mathematics.

Laboratory: Reproducibility in measurement of height and weight, determination of optimum weight for height, facial features from moiré fringe topography and rasterstereography, softwares to determine obesity profile, validate frequency-size relationship of human heart, size of heart from PMI readings, backasymmetry quantification using moiré fringe topography and rasterstereography

Recommended Reading

Page 1 of 2

- a) J. W. Heafner, Modeling Biological Systems: Principles and Applications, Springer, New York, 2005
- b) M. Ruth & B. Hannon, Modeling Dynamic Biological Systems, Springer, New York, 1997

^{*} For course announcements, assignments and past papers, go to Pedagogical Section, click on "Courses (offered during the current semester)".

MATH 803: Course Plan

Date	Topic	Date	Topic		
SEPTEMBER 2009					
24	Scientific method, handling scientific projects	DEK 20	109		
21	Selentific method, handring selentific projects				
OCTOBER 2009					
01	Accuracy, precision and reproducibility	08	No Class		
15	Modeling growth of children	22	Precedence & influence graphs in physical exam		
29	Moiré fringe topography & rasterstereography				
NOVEMBER 2009					
05					
	3-D imaging in face recognition	12	Mathematics of cardiovascular system		
19	Heart as a system of standing waves	26	The human spinal column, posture, curvatures		
DECEMBER 2009					
03	3-D modeling of the human spinal column				
· · · · · · · · · · · · · · · · · · ·					
JANUARY 20107					
07	Quantification of spinal curvatures	14	Sound in medicine, geometry of the ear		
21	Mathematics of hearing	28	Physics of eyes and vision		
EEDDIA DV 2010					
0.4	FEBRUARY 2010				
04	Diagnostic X rays, radiation penetration	11	X-ray image formation and contrast		
18	Photographic process and film sensitivity	25	Radiographic detail, image noise		

MATH 803: Laboratory

Students are supposed to perform experiments 1-3 and 5 experiments selected from 4-10:

- Must demonstrate reproducibility (stability & objectivity) in measurement of height
- *ii)* Must demonstrate reproducibility (stability & objectivity) in measurement of weight
- iii) Measurement of height and weight of a classmate and determination of optimum weight for height
- *iv)* Extraction of facial features (height map) using moiré fringe topography
- v) Extraction of facial features (curvature map) using rasterstereography

- vi) Software to determine obesity profiles of adult
- vii) Software to validate the relationship of frequencies of phonocardiogram with the size of heart
- viii) Software to validate method of determining size and shape of heart from readings obtained from stethoscope in 2D
- *ix*) Software for back-asymmetry quantification using moiré fringe topography
- x) Back-asymmetry quantification using Rasterstereography

MATH 803: Marks Breakdown

Marks
10
10
30
50

Total **100**