

Pre-requisite: MATH 685

MATH 686: Astronomy II (3+0)

Activity	Dates	Class Schedule
Introduction day		Friday1030h – 1149h
Teaching	July 16 – November 14	Saturday 1115h – 1254h
Proposal Presentations	October 10	Room No. 9, Mathematics
Semester Examinations	November 16 – December 5	Office Hours
Vacations	December 6–31 (Winter)	Saturday 1255h

Course Supervisor: Professor Dr. Syed Arif Kamal

Member AIAA (USA), IBRO (France)

MS (Indiana, Bloomington, USA); MA (Johns Hopkins, USA); PhD

Telephone: + (92 21) 9926 1300-6 ext. 2380 (Tuesday, Friday 1630h – 1730h)

Homepage: http://ngds-ku.org/kamal (Handout address: http://ngds-ku.org/M685-6/MATH686_09.pdf) *

e-mail: kamal(at the rate of)ngds-ku.org

Office: Room No. 6, Department of Mathematics, University of Karachi

Directions: http://www.ngds-ku.org/kamal/contact.htm#Directions

Course Objectives

To give the students a sound background in the techniques & the methods of astrodynamics & spaceflight dynamics so that they can apply these ideas to different branches of science & engineering, e. g., orbit computation for satellites & satellite-launch vehicles, stability consideration for launching of satellites, autopilot designing for spacecrafts & attitude control of satellites.

Higher Education and Job Opportunities

MS/PhD from Department of Mathematics or ISPA, MS from IST (Islamabad); jobs in SUPARCO, NDC, PAF & other R&D organizations

Course Outline

Section A: Projectile dynamics, orbital & escape velocities, geostationary & polar satellites, satellite-launch

vehicle (SLV), satellite & SLV orbits; down-range & cross-range error for short-range projectiles; mathematics of inertial-navigation & telemetry systems

Section B: Review of lagrangian & hamiltonian dynamics; two-body problem in plane-polar- & elliptic-astrodynamical-coördinate meshes (first one done in detail, second one only introduced)

Section C: Hohmann-transfer orbit; introduction of control laws (cross-product, extended-cross-product, normal-component-cross-product, dot-product, normal-component-dot-product & ellipse-orientation steering)

Section D: Introduction of guidance schemes (delta, Lambert, inverse-Lambert multi-stage-Lambert, Q, inverse-Q & multi-stage-Q)

Section E: Three-body problem & stability of satellites

Recommended Reading

- a) R. H. Battin, An Introduction to the Mathematics and the Methods of Astrodynamics, AIAA Education Series, New York (1987 & 1999)
- b) R. Deusch, Orbital Dynamics of Space Vehicles, Prentice Hall, Englewood Cliffs, New Jersey, USA (1963)

MATH 686 MSc Course, Second Semester 2009

^{*} For course announcements, assignments and past papers, go to *Pedagogical Section*, click on "Courses (offered during the current semester)".

MATH 686: Course Plan

Date	Topic to be covered on FRIDAY	Date	Topic to be covered on SATURDAY		
	SEP	ГЕМВЕК			
04	Transformation theory	05	Infinitesimal transformations		
11	General Discussion	12	Coördinate systems in astronomy		
18	No Class (Jumma-tul-Widaa)	19	Curvilinear coördinates		
25	Mathematics of INS and telemetry systems	26	Projectile dynamics		
	OC	TOBER			
02	Down-range & cross-range errors for SRBM	03	Rev of lagrangian & hamiltonian dynamics		
09	No Class	10	Proposal Presentations		
16	2-body problem in plane-polar-coörd. mesh I	17	2-body problem in plane-polar-coörd. mesh II		
23	Three-body problem & stability of satellites	24	2-body problem in elliptic-astrodyn. coörd. mesh		
30	Hohmann-transfer orbit	31	Introduction of control laws		
NOVEMBER					
06	Introduction to guidance schemes I	07	Introduction to guidance schemes II		
13	Revision	14	Exam-taking strategy		

MATH 686: Marks Breakdown

Evaluation Parameter		Marks
Class Attendance		10
Presentations on Research Proposals [@]		20
Final Examination		70
	Total	100

 $^{^{@}} Sample \ proposals, \ which \ won \ Dean's \ Research \ Grant \ may, \ now \ be \ downloaded \ from \ my \ homepage: http://www.ngds-ku.org/Industrial/DGS2007.pdf$