

2014 Session

Pre-requisite: MATH 510

MATH 685: Astronomy I (3+0)

Activity	Dates	Class Schedule
Introduction day	January 16, 2014	Monday-Wednesday
Teaching	January 17 – May 23	0830h-0920h
Semester Examinations	June 03-20	Venue: Room No. 009, Mathematics
Summer Holidays	June 23-30	Office Hours: Mon-Wed 1530h-1630h

Course Supervisor: Professor Dr. Syed Arif Kamal; Telephone: + 92 21 9926 1300-6 ext. 2380

PhD; MSc summa cum laude; MA (Johns Hopkins, United States); MS (Indiana, United States) *Special courses in Space Physics, Astrophysics and Cosmology at MSc and MS levels*Former Senior Scientific Officer, Control Systems Laboratories and Consultant, Guidance, Navigation and Control Laboratories, SUPARCO (Plant), Karachi; Interdepartmental Faculty, Institute of Space and Planetary Astrophysics (ISPA), University of Karachi; Visiting Faculty, Department of Aeronautics and Astronautics, Institute of Space Technology, Islamabad

Homepage: https://www.ngds-ku.org/kamal • *e-mail*: profdrakamal@gmail.com *Faculty Office*: Room No.006, Department of Mathematics, University of Karachi

Directions: https://www.ngds-ku.org/kamal/contact.htm#Directions

Handout Address: https://ngds-ku.org/M685-6/MATH685_14.pdf

Tutorial: Ms. Sabahat Latif (Room No. 115)

Course Objectives

To give the students a sound background in the techniques and the methods of astrodynamics and space-light dynamics, so that they can see the applications of these ideas in different branches of science and engineering, *e. g.*, orbit computation for satellites and satellite-launch vehicles, stability consideration for launching of satellites, autopilot designing for spacecrafts and attitude control of satellites.

Higher Education and Job Opportunities

MPhil/PhD from Department of Mathematics or ISPA, MS from IST (Islamabad); jobs in SUPARCO, NDC, PAF & other R&D organizations

Course Outline

Section A: Orientation of earth, latitude, longitude, meridian, dateline international, poles, Greenwich mean time (GMT), time zones, rotation of earth about its axis, formation of day and night with demonstration, revolution of earth round the sun, tilting of earth axis, seasons, solar calendar, lunar calendar, core,

crust and atmosphere of earth, origin of earth magnetism, geographic and magnetic north poles, solar and lunar eclipses, solar system

Section B: Problem-solving techniques (scalar and vector methods: force and energy methods, conservation laws as applied in astronomy, under-determined, critically-determined and over-determined systems: existence of solution of pair of simultaneous equations), mathematics of scientific instruments, errors (systematic and random), spherical-polar and cylindrical coordinates

Section C: Gravitational mass and inertial mass, weak principle of equivalence, mass and weight, factors in modeling of 'g', expression for 'g' (inside and outside earth)

Section D: Parts of rocket, rocket and aircraft engines, astrodynamical terminologies and coördinate systems, convention to label axes, combination of rotations, Euler angles, infinitesimal transformations

Recommended Reading

- a) R. Deusch, Orbital Dynamics of Space Vehicles, Prentice Hall, Englewood Cliffs, New Jersey, United States (1963)
- b) M. Zeilik, Conceptual Astronomy: A Journey of Ideas, John Wiley, New York, United States (1993)

MATH 685: Astronomy I MA/MSc (Final) Course, First Semester 2014 Page 1 of 2

MATH 685: Astronomy I (3+0)

Course Plan

Day	Monday	Date	Tuesday	Date	Wednesday	
Date						
♦ FEBRUARY 2014						
03	Introduction to astronomy	04	Astromathematics	05	No Class (Kashmir Day)	
10	Astrodynamics	11	Space-Flight Dynamics	12	Orientation of earth	
17	Longitude and latitude [@]	18	Rotation of earth about axis [#]	19	Discussion	
24	Revolution of earth\$	25	Solar and lunar calendars	26	Earth core and magnetism	
MARCH 2014						
03	North and south poles [%]	04	Solar eclipse	05	Lunar eclipse	
10	Discussion	11	Student Presentations ^{&}	12	Student Presentations&	
17	Student Presentations&	18	Student Presentations&	19	Student Presentations ^{&}	
24	Problem-solving techniques	25	Astronomical instruments	26	Errors	
31	Quiz					
APRIL 2014						
		01	Curvilinear coördinates	02	Grav. and inertial masses*	
07	Discussion	08	Modeling of $g^{,\P}$	09	Expression of 'g'	
14	Parts of rocket	15	Rocket and aircraft engines	16	Astrodyn. terminologies ^µ	
21	Coördinate Systems [©]	22	Convention to label axes	23	Combination of rotations	
28	Euler angles	29	Comb. of rot. and transl.®	30	Inf. Transformations I^{\exists}	
MAY 2014						
05	Inf. Transformations II^{\exists}	06	Discussion	07	Glimpse of the next course	
12	Revision	13	Revision	14	Revision	
19	Past-Paper Solution I	20	Past-Paper Solution II	21	Exam-Taking Strategy	

Additional Details

Past Papers: https://www.ngds-ku.org/kamal/past.htm#Astronomy

[®] meridian, dateline international, poles, Greenwich mean time (GMT), time zones

[#]formation of day and night

^{\$}revolution of earth round the sun, tilting of earth axis, seasons

[%]geographic and magnetic poles

[&]amp;students shall prepare and give presentations on planets (core, crust, atmosphere and dynamics) of the solar system

^{*}gravitational and inertial masses, weak principle of equivalence, mass and weight

factors in modeling of 'g'

[§]inside and outside earth

^µastrodynamical terminologies

[©]used in astronomy, astromathematics and astrodynamics

[®]combination of rotation and translation

³infinitesimal transformations, as applied to inertial navigation system